P0503-D300-RPT-GEO-004 Rev. 1

B0801-C025

Central Area Guideway

Geotechnical Data Report – Phase Two 65% Engineering Design Investigation

Disclaimer:

VTA makes no representation or warranty regarding the accuracy of the information provided in this document. VTA provides this information for reference purposes only. You may not rely on this information for any purpose, including but not limited to the preparation of any bids or proposals to VTA. By reviewing this information, you and your employees, agents, representatives, consultants, or contractors assume the risk of use or reliance on the information being provided and bear the sole responsibility for verifying any materials used or relied upon. Neither VTA nor its employees, agents, representatives, consultants or contractors shall be liable for any damages for the use of this information or the viewing or copying of such information.

December 16, 2008 Issued for Use

See disclaimer on cover page.

ForReference

P0503-D300-RPT-GEO-004 Rev. 1

B0801-C025

Central Area Guideway

Geotechnical Data Report – Phase Two 65% Engineering Design Investigation

December 16, 2008 Issued for Use

See disclaimer on cover page.

This page is intentionally left blank.

or

GEOTECHNICAL DATA REPORT – PHASE TWO 65% ENGINEERING DESIGN INVESTIGATION

FOR

65% ENGINEERING DESIGN PHASE

Contract No. S03099

Submitted by: HMM/Bechtel SVRT, a Joint Venture

Abhishek Jain, E.I.T. Project Engineer

Reviewed by:

Andrew Liu, P.E., G.E. Geotechnical Lead

1 And

Ching Wu, P.E. ⁴ Engineering Manager

Date

Date

12/30

Date

10

Approved by:

for

John Hawley. P.E. Date

Central Area Guideway Design Manager

Prepared by HMM/Bechtel SVRT, a Joint Venture

This page is intentionally left blank.

or

TABLE OF CONTENTS

1.0	Exe	cutive S	Summary	1
2.0	Intr	oductio	on	1
	2.1	Scope o	f Work	.1
	2.2	Report	Organization	.2
	2.3		ons	
3.0	Fiel	d Inves	tigations	3
	3.1	Introduc	ction	.3
		3.1.1	Team Organization	.3
		3.1.2	Project Restrictions	.3
	3.2	Boring	Program	.4
		3.2.1	Overview	.4
		3.2.2	Drill Rig and Hammer Types	.5
		3.2.3	Sampling Methods and Equipment	.5
			3.2.3.1 Sampler Types	
		. . <i>i</i>	3.2.3.2 Sampling Interval	
		3.2.4	Handheld Field Tests	
		3.2.5	Groundwater Level Measurements	
		3.2.6	Sample Handling	
		3.2.7	Borehole Completion and Abandonment	
		3.2.8	Boring Log Organization and Presentation	
		3.2.9	Standard Penetration Test (SPT)	.9
		3.2.10	SPT Energy Calibration1	0
		3.2.11	Air and Vapor Monitoring1	1
	3.3	Cone Pe	enetration Testing Program1	.1
		3.3.1	Overview1	.1
		3.3.2	Conventional CPTs1	.1
			3.3.2.1 Equipment1	
			3.3.2.2 Procedures	
			3.3.2.3 Locations1	3

Silicon Valley Rapid Transit Project – Central Area Guideway Geotechnical Data Report – Phase Two 65% Engineering Design Investigation

		2 2 2	3.3.2.4 Results	
		3.3.3	Seismic CPTs	
			3.3.3.1 Equipment3.3.3.2 Procedures	
			3.3.3.2 Procedures 3.3.3.3 Locations	
			3.3.3.4 Results	
		3.3.4	CPT Completion and Abandonment	
	3.4	Ground	water Dissolved Gas Sampling	
4.0	Lab	oratory	7 Testing	. 25
	4.1	Introduc	ction	25
		4.1.1	Laboratory Visual Classification	
		4.1.2	Moisture Content	29
		4.1.3	Unit Weight	
		4.1.4	Sieve Analysis	30
		4.1.5	Sieve and Hydrometer Analysis	
		4.1.6	Atterberg Limits	30
		4.1.7	Materials Finer than No. 200 Sieve	30
	4.2	Specialt	y Geotechnical Testing	31
		4.2.1	Direct Shear (Conventional)	31
		4.2.2	Large Scale Direct Shear	31
		4.2.3	Sticky Limit	32
		4.2.4	Maximum and Minimum Index Density	32
		4.2.5	Shipping and X-ray of Relatively Undisturbed Samples	33
		4.2.6	Cyclic Triaxial Shear	33
		4.2.7	Cyclic Simple Shear	34
		4.2.8	Soil Abrasion	34
		4.2.9	Mineralogy	35
5.0	Sun	nmary a	and Future Data Reports	. 36
REI	FERE	NCES		

LIST OF APPENDICES

- Appendix 1: Logs of Borings
- Appendix 2: Cone Penetration Test (CPT) Results
- Appendix 3: Seismic Cone Penetration Test (SCPT) Results
- Appendix 4: Laboratory Classification Test Results
- Appendix 5: Cyclic Triaxial Test Results
- Appendix 6: Large-Scale Direct Shear Test Results
- Appendix 7: Sticky Limit Test Results
- Appendix 8: Direct Shear Test Results
- Appendix 9: Consolidation and Cyclic Shear Test Results
- Appendix 10 Dissolved Gas Sampling and Analysis Report
- Appendix 11 Soil Abrasion Test Results
- Appendix 12 Mineralogy Test Results

LIST OF TABLES

Table 3-1 Summary of Exploratory Borehole Program	17
Table 3-2 Summary of Exploratory Cone Penetration Testing Program	
Table 4-1 Laboratory Testing Program – List of Appendices	27

LIST OF FIGURES

Figure 3-1 Field Investigation Location Map	19
Figure 5-1 Geotechnical Plan and Profile Legend	37
Figure 5-2 Geotechnical Plan and Profile with Classification Test Results: STA 561+00	
to STA 570+00	39
Figure 5-3 Geotechnical Plan and Profile with Classification Test Results: STA 570+00	
to STA 584+00	41
Figure 5-4 Geotechnical Plan and Profile with Classification Test Results: STA 584+00 to STA 597+00	43
Figure 5-5 Geotechnical Plan and Profile with Classification Test Results: STA 597+00	
5	45
Figure 5-6 Geotechnical Plan and Profile with Classification Test Results: STA 611+00	
to STA 622+00	47
Figure 5-7 Geotechnical Plan and Profile with Classification Test Results: STA 622+00	
to STA 636+00	49
Figure 5-8 Geotechnical Plan and Profile with Classification Test Results: STA 636+00	
to STA 650+00	51
Figure 5-9 Geotechnical Plan and Profile with Classification Test Results: STA 650+00	
to STA 664+00	53
Figure 5-10 Geotechnical Plan and Profile with Classification Test Results: STA 664+00	
to STA 678+00	55
Figure 5-11 Geotechnical Plan and Profile with Classification Test Results: STA 678+00	
to STA 692+00	57
Figure 5-12 Geotechnical Plan and Profile with Classification Test Results: STA 692+00	
to STA 706+00	59
Figure 5-13 Geotechnical Plan and Profile with Classification Test Results: STA 706+00	
to STA 720+00	61
Figure 5-14 Geotechnical Plan and Profile with Classification Test Results: STA 720+00	(0)
to STA 732+00	63
Figure 5-15 Geotechnical Plan and Profile with Classification Test Results: STA 732+00	<i></i>
	65
Figure 5-16 Geotechnical Plan and Profile with Classification Test Results: STA 746+00	(7
to STA 759+00	0/
Figure 5-17 Geotechnical Plan and Profile with Classification Test Results: STA 759+00	(0
to STA 773+00	09

Figure 5-18 Geotechnical Plan and Profile with Classification Test Results: STA 773+00 to STA 787+00	71
Figure 5-19 Geotechnical Plan and Profile with Classification Test Results: STA 787+00	
to STA 801+00 Figure 5-20 Geotechnical Plan and Profile with Classification Test Results: STA 801+00	73
to STA 815+00	75
Figure 5-21 Geotechnical Plan and Profile with Classification Test Results: STA 815+00 to STA 829+00	77
Figure 5-22 Geotechnical Plan and Profile with Classification Test Results: STA 829+00 to STA 843+99	79
Figure 5-23 Geotechnical Plan and Profile with Strength Parameters: STA 561+00 to STA 570+00	
Figure 5-24 Geotechnical Plan and Profile with Strength Parameters: STA 570+00 to STA 584+00.	83
Figure 5-25 Geotechnical Plan and Profile with Strength Parameters: STA 584+00 to	
STA 597+00 Figure 5-26 Geotechnical Plan and Profile with Strength Parameters: STA 597+00 to	85
STA 611+00	87
Figure 5-27 Geotechnical Plan and Profile with Strength Parameters: STA 611+00 to STA 622+00	89
Figure 5-28 Geotechnical Plan and Profile with Strength Parameters: STA 622+00 to STA 636+00	91
Figure 5-29 Geotechnical Plan and Profile with Strength Parameters: STA 636+00 to STA 650+00	93
Figure 5-30 Geotechnical Plan and Profile with Strength Parameters: STA 650+00 to STA 664+00	95
Figure 5-31 Geotechnical Plan and Profile with Strength Parameters: STA 664+00 to	
STA 678+00 Figure 5-32 Geotechnical Plan and Profile with Strength Parameters: STA 678+00 to	97
STA 692+00	99
Figure 5-33 Geotechnical Plan and Profile with Strength Parameters: STA 692+00 to STA 706+00	101
Figure 5-34 Geotechnical Plan and Profile with Strength Parameters: STA 706+00 to STA 720+00	103
Figure 5-35 Geotechnical Plan and Profile with Strength Parameters: STA 720+00 to STA 732+00	
Figure 5-36 Geotechnical Plan and Profile with Strength Parameters: STA 732+00 to	
STA 746+00 Figure 5-37 Geotechnical Plan and Profile with Strength Parameters: STA 746+00 to	
STA 759+00 Figure 5-38 Geotechnical Plan and Profile with Strength Parameters: STA 759+00 to	
STA 773+00 Figure 5-39 Geotechnical Plan and Profile with Strength Parameters: STA 773+00 to	111
STA 787+00	113

Figure 5-40 Geotechnical Plan and Profile with Strength Parameters: STA 787+00 to	
STA 801+00	115
Figure 5-41 Geotechnical Plan and Profile with Strength Parameters: STA 801+00 to	
STA 815+00	117
Figure 5-42 Geotechnical Plan and Profile with Strength Parameters: STA 815+00 to	
STA 829+00	119
Figure 5-43 Geotechnical Plan and Profile with Strength Parameters: STA 829+00 to	
STA 843+99	121

or

1.0 Executive Summary

To supplement the 10% Conceptual Engineering geotechnical program (URS, 2003) and the 35% Preliminary Engineering Central Area Guideway (previously Tunnel Segment) geotechnical investigation program (HMM/Bechtel, 2005a), a Phase 2 (P2) 65% Engineering Design geotechnical investigation was carried out from March of 2007 to January of 2008. The P2 field investigation consisted of 19 boreholes and 25 Cone Penetration Tests intended to cover changes in the alignment, explore deeper strata at the locations of station excavations, and determine additional soil parameters for engineering design. In addition, soil samples were sent to several laboratories for general classification tests as well as for specialty testing needed to collect data required for seismic design, for obtaining additional soil strength data, and for estimating construction behavior of soils.

The results of the pumping test program, together with the associated boring and well information, are documented in a separate Pumping Test Data Report (HMM/Bechtel, 2008).

2.0 Introduction

2.1 Scope of Work

The information contained in this report only covers the results from the 19 boreholes, the 25 CPTs and the associated laboratory test results obtained during the P2 phase of the Project. Additional geotechnical data from the investigations listed below, with the exception of 35% PE Investigation Plan and Profile Drawings, are not included. The scope of this report is limited to presenting factual data without engineering interpretation by the Project. The results from the field and laboratory investigation involved interpretation from HMM/Bechtel subcontractors working under the regulations of the Tunnel Segment Design Quality Plan (HMM/Bechtel, 2007). HMM/Bechtel reviewed the subcontractor's work, but it was the responsibility of the engineer(s) in charge at the respective subcontractor firms to ensure that their work was performed under the normal standard of care in their locale of practice.

Additional SVRT sources of geotechnical data pertinent to the Central Area Guideway can be found in the following reports:

- 10% Conceptual Engineering Geotechnical Exploration Finds and Recommendations report (URS, 2003)
- 35% Preliminary Engineering Review of Available Geotechnical Data report (HMM/Bechtel, 2004)
- 35% Preliminary Engineering Geotechnical Data Report (HMM/Bechtel, 2005a)
- 35% Preliminary Engineering Hydrogeology Report (HMM/Bechtel, 2005b)

These reports also reference additional non-SVRT sources, including reports from public agencies, reports from private projects, and files from local geotechnical consulting companies that contain additional data relevant to the Project.

2.2 Report Organization

Chapter 3 of this report describes details of the field investigation and Chapter 4 describes details of the laboratory testing. Chapter 5 summarizes the results and outlines a tentative future geotechnical investigation program to be carried out prior to construction. The chapter also includes an updated version of the plan and profile drawings that were previously presented in Chapter 8 of the 35% PE Tunnel Segment Geotechnical Data Report (HMM/Bechtel, 2005a), incorporating the new borings and CPTs.

Results of the field investigations are presented in three appendices as follows:

Appendix 1: Logs of Borings

Appendix 2: Cone Penetration Test (CPT) Results

Appendix 3: Seismic Cone Penetration Test (SCPT) Results

Appendix 10: Dissolved Gas Sampling and Analysis Report

Laboratory test results are presented in six appendices as follows:

Appendix 4: Laboratory Classification Test Results

Appendix 5: Cyclic Triaxial Test Results

Appendix 6: Large-Scale Direct Shear Test Results

Appendix 7: Sticky Limit Test Results

Appendix 8: Direct Shear Test Results

Appendix 9: Consolidation and Cyclic Shear Test Results

Appendix 11: Soil Abrasion Test Results

Appendix 12: Mineralogy Test Results

2.3 Limitations

The geotechnical data presented in this report are results of the site investigation managed by HMM/Bechtel for the SVRT Project Central Area Guideway Section Phase 2, 65% Engineering Design Investigation. Data obtained by others for the 10% Conceptual Design are not included and results from the 35% PE investigation are only shown in the Plan and Profile Drawings. The number of boreholes and CPTs was based on the level of design at the time of planning this phase of investigation. A future Phase 3 (P3) Investigation will include additional exploration to cover specific locations of the Central Area Guideway alignment that were not finalized at the time of this investigation.

3.0 Field Investigations

3.1 Introduction

The P2 65% Engineering Design Investigation provides additional geotechnical data about the stratigraphy, groundwater, and physical and engineering characteristics of the soil at specific locations along the alignment. Details of the field investigation are described in the following sections.

3.1.1 Team Organization

Several geotechnical engineering, drilling and specialty testing firms contributed to the investigation program. Subcontractors included Fugro West, Parikh Consultants, Pitcher Drilling, URS Corporation, ABE Engineering, and Towill.

Fugro's field investigation scope focused on the CPT explorations, which included seismic cone testing. Pitcher Drilling provided the drill rigs and drill crews necessary to complete all geotechnical borings and soil sampling. PCI provided coordination support and technical oversight for Pitcher Drilling. Field engineers from PCI performed all field logging of borings. URS Corporation provided part-time Quality Assurance support for subcontractor field activities. ABE Engineering calibrated Pitcher Drilling's automatic hammer on the Failing 1500 drill rig. Towill surveyed all borehole and CPT locations.

Kleinfelder, under subcontract to EarthTech for the Central Area Guideway Stations group for preliminary design work, reviewed the scope of the field investigation and observed a partial portion of the field exploration activities at underground Station locations. Kleinfelder also requested exploration at one location to investigate the potential for seismic liquefaction (see Section 3.2.1).

3.1.2 Project Restrictions

Restrictions imposed by local agencies, private property owners, neighborhood organizations, and commercial and residential tenants limited the access to some planned locations and impacted the work schedule.

Encroachment permits were required by several public and private agencies to perform borings and CPTs along different portions of the alignment. These agencies included the City of San Jose (CSJ), the Peninsula Corridor Joint Powers Board (PCJPB), San Jose Water Company, Union Pacific Railroad (UPRR) and Santa Clara Valley Water District (SCVWD). The CSJ also required traffic control permits. The SCVWD required exploration permits.

Design revisions made at the time the field program was on-going, were incorporated into the investigation as needed and when possible. Some of the major design revisions included the following:

- Consideration of north and south alternative tunnel alignments at the Coyote Creek crossing to avoid a deeper alignment at the Coyote Creek Bridge (borings and CPTs drilled north and south of the alignment on adjacent properties);
- Consideration of the locations for the proposed ventilation shaft structures

This report reflects the April 25th, 2008 tunnel alignment.

3.2 Boring Program

The boring program commenced on June 4, 2007. A total of 19 rotary-wash borings were completed as part of P2 65% Engineering Design Investigation (Figure 3-1 and Table 3-1).

One borehole (BH-81) was completed late in the P1 35% Preliminary Engineering Investigation. The boring log and information related to the investigation for BH-81 has been included in Appendix 1 and Table 3-1, respectively, of this report.

The six sonic borings completed as part of the pumping test program are included in Table 3-1. The boring logs and a description of sonic drilling and sampling is included in the Draft Pumping Test Data Report (HMM/Bechtel, 2008).

3.2.1 Overview

Of the 19 borings, six (6) were completed at the two portals, seven (7) were drilled at the three proposed underground stations, and six (6) were drilled at other locations along the tunnel alignment. Boring depths, sampling methods and sampling intervals were chosen based on design needs.

Borings at the two portals were drilled to obtain additional soil information at locations where the alignment had shifted and/or the portal had moved north. Borings were generally drilled to a minimum depth of twenty feet below the maximum depth of the proposed excavation cutoff wall. Soil sampling for portal borings was specified at 5-ft intervals or where changes in formation were observed.

Borings completed at the proposed Alum Rock Station, Downtown San Jose Station and Diridon/Arena Station were generally drilled to a depth of 200-ft, with the exception of BH-105. The depth of drilling and sampling was based on the need to better define soil stratigraphy between 150- and 200 ft, which is the maximum estimated depth of the station cut-off walls. At the request of Central Area Guideway Stations group, BH-105 was drilled to a depth of 51.5-ft to investigate the potential for seismic liquefaction.

Soil sampling was specified at 10-ft intervals between 0 and 150 ft depths and at 5-ft intervals or where changes in formation were observed between 150- and 200-ft depths. Wider sampling intervals (10-ft) were selected where previous borings had captured enough geotechnical information down to 150-ft depths.

Borings drilled along the proposed tunnel alignment (tunnel borings) were planned based on potential realignments of the tunnel or where access to the planned boring locations were not permitted during the 35% Design Phase. Borings were generally drilled to depths of at least 20 ft below the tunnel invert, based on the tunnel alignment at the time of drilling. Continuous sampling in the "tunnel zone" (from 20 ft above the proposed tunnel crown to 20 ft below invert) was specified at all six (6) borings along the tunnel alignment. At BH-87, the tunnel boring was extended to 201.5 feet to provide preliminary soil information for the proposed FSS Ventilation Shaft structure located along Santa Clara St.

3.2.2 Drill Rig and Hammer Types

The drill rigs used for the project consisted of two types of truck-mounted equipment, a Fraste Multidrill XL drill rig and a Failing 1500 drill rig. The Failing 1500 drill rig is one of several typical rig types commonly used for rotary wash drilling. Fraste Multidrill XL drill rigs are top-drive (rotation and circulation are conducted at the top of the drill string), thus allowing a special type of continuous "geo-barrel" sampling (see Section 3.2.3.1 Sampler Types). The Failing 1500 and Fraste Multidrill XL drill rigs utilized an Automatic Trip Hammer system to advance split-spoon and Modified California samplers.

The drill rigs were equipped with a standard 140-lb hammer to drive thick-walled samplers. ABE Engineering calibrated the efficiency of the automatic hammer (Failing 1500 Rig) at the location of BH-85 (Section 3.2.10).

3.2.3 Sampling Methods and Equipment

3.2.3.1 Sampler Types

Four types of soil samplers were used: driven thick-walled samplers (splitspoon and Modified California), pushed thin-walled samplers (Shelby Tube), rotated thin-walled samplers (Pitcher Barrel) and a wireline soil coring sampler (101 Geo-Barrel Sampler). Bag samples were retrieved at a few selected depths and from split-spoon samplers. Modified California (MC) samples were placed in plastic tubes.

Split-spoon and Modified California samplers were used to obtain penetration resistance data of granular materials such as sandy or gravelly soils. The 140-pound drive hammer used for sample collection, casing installation, and removal was in conformance with ASTM D1586, Standard Method for Penetration Test and Split-Barrel Sampling of Soils. The split-spoon sampler used had an outside diameter of 2 inches and an inside diameter of 1-3/8 inches and was in conformance with ASTM D1587, Standard Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes. The Modified California (MC) sampler used was in general conformance with ASTM D3550, Standard Practice for Thick Wall, Ring-Lined, Split Barrel, Drive Sampling of Soils. The MC sampler has an outside diameter of 3 inches and an inside diameter of 2.5 inches. The MC sampler was also used to obtain disturbed samples of sand and gravel soils. The MC sampler was able to retrieve larger gravel particles (up to 2.5 inches) that could not be obtained using the split-spoon sampler.

Soft to stiff clayey soils were generally sampled using a thin-walled Shelby Tube sampler in conformance with ASTM D1587. The Shelby Tube sampler consists of a 3-inch diameter, 36-inch long mild steel thinwalled tube that is hydraulically pushed by the drill rig. The sampler was used to obtain relatively undisturbed samples of clays and silts (finegrained soils). For each push, the standard length of advancement was 30 inches.

Very dense soils and stiff to very stiff clays were generally sampled using a Pitcher Barrel sampler in conformance with ASTM D1587. Pitcher Barrel samplers consist of double-tube core-barrels; the inner barrel, which consists of a Shelby tube, is affixed to a spring-loaded sampler head that extends or retracts, relative to the cutting bit on the outer barrel, with changes in soil stiffness.

The magnitude and change in hydraulic pressure during Shelby Tube and Pitcher Barrel sampler advancement were recorded on the boring logs. A change in hydraulic pressure qualitatively indicates a change of material type or consistency at each depth or location, but may not be comparable between two separate rigs due to differences of hydraulic systems.

Pitcher Barrel sampling could not be performed in some gravelly formations. Thick drilling fluid is needed to lift the gravelly material from the bottom of the boring during the rotary wash process. The thick drilling fluid reduces the circulation within the sampler and around the drill bit. If the drilling fluid becomes too thick and the circulation ports of the sampler plug, the cutting bit heats up, causing the Pitcher Barrel cutting bit to wear out quickly or fracture.

Special sampling using a 101 Geo-Barrel (2.4-inch inside diameter) system (proprietary sampling system designed by Pitcher Drilling) was performed at a few selected boring locations where continuous sampling using a larger sampler was requested by the tunnel design team. At borings near the corner of Asbury St. and Stockton Ave. (BH-102, BH- 103 and BH-106) and near Coyote Creek tunnel alignment crossing (BH-88), the 101 Geo-Barrel sampling method was attempted so that continuous disturbed samples throughout the tunnel zone could be obtained. A MC sampler was used to obtain disturbed samples of sand and gravel soils at locations where difficulties recovering continuous samples using the 101 Geo-Barrel sampler arose.

3.2.3.2 Sampling Interval

In addition to the sample intervals described in Section 3.2.1, samples were also obtained at depths where material changes were detected for all borings. Cuttings in the drilling fluid were examined to identify changes in the soil conditions between sample locations. Material changes were also identified based on the driller's observations of drill rig response (i.e. chattering of drill rig, loss of fluid, etc.).

Occasionally soil samples could not be recovered due to wet and soft cohesive soils, loose granular soils, or obstructions, such as gravel or slough in the shoe or entrance of the samplers. When this occurred, the field engineer typically directed the driller to drill out the boring interval where sampling had been attempted and to sample below the disturbed zone of material.

3.2.4 Handheld Field Tests

In addition to visual observations of soil consistency, handheld field tests using pocket penetrometer and pocket torvane were performed in the field on the bottom of relatively undisturbed Shelby Tube and Pitcher Barrel samples. The estimated unconfined compressive strengths from pocket penetrometer tests are presented in the material description column on each boring log. Units for unconfined compressive strength are obtained in tons per square foot (tsf). Although the pocket penetrometer was used to estimate the unconfined compressive strength for cohesive soils, readings from the pocket penetrometer were also converted to undrained shear strength in units of kips per square foot, ksf. The pocket torvane was used to directly estimate the undrained shear strength for cohesive soils in ksf units. Both handheld field tests were used as a guide to strength and consistency variations. The undrained shear strength test results from handheld field tests are shown at the corresponding test depths on the boring logs presented in Appendix 1.

3.2.5 Groundwater Level Measurements

Groundwater levels are typically based on the assumption that the drilling fluid/mud reached equilibrium with natural groundwater level overnight and should not be used for design. For design purposes, readings from vibrating wire piezometers and observation wells that were installed to provide groundwater level and pore-water pressure information should be used.

3.2.6 Sample Handling

In order to obtain high-quality undisturbed samples for laboratory testing, every effort was made to minimize disturbance during handling and transportation of Shelby Tube and Pitcher Barrel samplers. Slough was typically removed from the tubes and empty spaces at the top and bottom of the sample tubes were filled with Styrofoam packaging peanuts prior to initial sealing in the field. Shelby Tubes and Pitcher Barrel samples were kept upright in wooden boxes.

Sample preservation and transportation followed ASTM D4220, Standard Practice for Preserving and Transporting Soil Samples. In general, all samples were protected from extreme temperatures and kept out of direct sunlight. Samples were carefully transported from the field to the laboratory and stored in locations where they were not exposed to extreme temperature changes and would not be disturbed.

Waxing of Shelby Tube sample tubes took place at Parikh Consultant's laboratory, generally within three (3) days of drilling. Waxing was performed in accordance with ASTM D4220.

3.2.7 Borehole Completion and Abandonment

Borings were generally terminated at the planned depth. At two locations, BH-102 and BH-103, borings were mistakenly terminated 10 ft shallower than planned. Subsequently, BH-103 was re-drilled down to the previous completed depth of approximately 80 ft and then drilled down to the specified depth of 90.5 ft.

Prior to completion of each boring, the Santa Clara Valley Water District (SCVWD) was contacted for notification of grouting. After the boring was drilled to the planned depth, the borehole was grouted from the bottom up using a tremie pipe per SCVWD requirements. All Investigation Derived Waste (IDW), including loose soil or cuttings from the drilling operation, was placed in 55-gallon drums and removed from the site. All drums containing IDW were characterized, labeled, and disposed of by Parikh Consultants' subcontractor Integrated Waste Management (IWM) in accordance with applicable regulatory requirements.

Pavement removed to drill borings was patched using a non-metallic, non-shrink, quick-setting grout.

3.2.8 Boring Log Organization and Presentation

Soil descriptions were made in general accordance with ASTM D2487, Standard Classification of Soil for Engineering Purposes (Unified Soil Classification System) and ASTM D2488 Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). The boring logs are presented in Appendix 1. Towill, Inc. surveyed the ground surface elevation of all borehole locations based on NAVD88 (North American Vertical Datum, 1988). The coordinates and surface elevations are shown on each boring log.

Boring logs were prepared for all 19 borings of P2. The Boring Log Key (Figure A1-1) summarizes coarse-grained and fine-grained soils and corresponding group names. General notes, abbreviations, sampler types, soil structure definitions, consistency and relative density terminology and moisture content descriptions that are incorporated into each of the boring logs are also included on the Boring Log Key. Each boring log presents boring specific details including: Field Engineer (Logged By), Quality Control Manager (Checked By), Drilling Start and Completion Dates, Drilling Contractor and Operator Name, Project Location, Drilling Method, Hammer Type and Drill Rig Type. Drilling Start and End Times for each day of drilling are shown within the material description column.

The field engineer for Parikh Consultants recorded the soil conditions encountered as the borings were drilled. At depths where sampling was not performed, field engineers based soil information on soil cuttings recovered during the rotary wash drilling process and driller's comments regarding drilling response (i.e., "chattering" noise from drill rods during drilling in sands and gravels, changes in drilling pressures at soil layer intervals, etc.). Field engineers recorded handheld field test results from pocket penetrometer and pocket torvane tests on the field boring logs, as well as results of air monitoring tests of the breathing zone using a Photo-Ionization Detector (PID) and Lower Explosive Limit (LEL/O2) meters. The final boring depth was also recorded. The field engineer from Parikh Consultants also recorded observations of caving conditions and locations where loss of drilling fluid occurred. Upon completion of the borings and laboratory testing, information recorded on the field log was entered into a gINT database and printed out using a gINT boring log template.

Soil samples were visually classified in the laboratory (see Section 4.1.1 Laboratory Visual Classification) prior to soil strength and property testing (see Section 4.1.2 through 4.1.7 and Section 4.2). The soil information presented on the gINT boring logs was prepared based on the results of the laboratory visual classification and index tests and were reviewed for Quality Assurance by HMM/Bechtel.

3.2.9 Standard Penetration Test (SPT)

The Standard Penetration Test (SPT) is a measure of the resistance of the soil during sampling using the split-spoon sampler. This resistance is an indicator of the consistency in fine-grained soils and density and strength in coarse-grained soils. The standard penetration resistance of the soil is defined as the number of blows (N) required to drive the sampler one foot into the soil with a 140-pound hammer dropped 30 inches. The hammer is lifted using a mechanical device to elevate the hammer (automatic hammer).

The number of blows required to advance the split-spoon samplers was counted and recorded for each 1-inch interval of driving by the field engineer. The SPT, in accordance with ASTM D1586, was halted if the total number of blows exceeded 100, the number of blows exceeded 50 in any 6-inch increment, or if the sampler was not advanced as a result of 10 consecutive blows. The distance driven for each of these refusal conditions was recorded. When the final penetration increment was less than 6 inches, refusal was indicated and the actual inches-advanced is presented on the logs.

In cases when the sampler did not meet the refusal criteria, the SPT blow count shown on the boring logs is the sum of the blows for the final 12 inches. The first 6-inch interval is not presented on the boring logs unless the sampling interval was 6 inches or less. The Boring Log Key presents a summary of blow count information.

Undisturbed coarse-grained soil samples are not possible to obtain using typical driven thick-walled samplers, pushed thin-walled samplers or 101 Geo-Barrel samplers. It is possible, however, to estimate the in-situ density using the SPT. For the 65% Engineering Design Investigation, the SPT was generally performed only at locations and depths where granular material was expected.

A Modified California (MC) sampler was also used to sample coarse-grained soils at selected depths of chosen borings. The uncorrected blow count using a driven MC sampler was recorded and is shown on the boring logs in Appendix 1. In order to obtain a comparable correlation of strength and density of soils to the SPT blow count (N-value), the Modified California blow count may be corrected by multiplying it by a correction factor. This correction factor is typically a function of sampler size and type of soil being sampled. Uncorrected Modified California blow counts are presented on the boring logs and are enclosed in parentheses to differentiate the values from SPT blow counts.

3.2.10 SPT Energy Calibration

To estimate the energy transfer ratio of the hammer on the Failing 1500 drill rig, ABE Engineering calibrated the efficiency of the automatic hammer during drilling of BH-85. The results of the calibration showed that the mean energy transfer ratio, based on 315 blows of the automatic hammer, was approximately 79% of the theoretical energy (140-lb hammer at 30-inch drop). The results of the energy calibration are presented in Appendix 1 after Logs of Borings. The Automatic Trip Hammer System on the Fraste Multidrill XL drill rig was not calibrated due to the limited number of SPTs performed on that rig. However, a calibration was performed on the Fraste Multidrill XL drill rig on a previous project in San Francisco in July of 2006. The results from that calibration demonstrated that the mean energy transfer ratio was approximately 82% of the theoretical energy (140-lb hammer at 30-inch drop). Although these results were not taken from a calibration performed on the SVRT project, they indicate that the

energy transfer ratio is approximately 80 percent for SPTs taken along the alignment using an Automatic Trip Hammer System.

3.2.11 Air and Vapor Monitoring

Air monitoring of the work zone was conducted as part of the Work Plan to protect workers should exposure to contamination occur. The breathing zone around the drilling operations was monitored frequently using a Photo-Ionization Detector (PID) meter and a Low Explosive Limit/Oxygen (LEL/O₂) meter. The PID instrument used was an Environmental Instruments Co. Model "Determinator" Organic Vapor Meter (OVM) with a minimum detectable level of 0.1 parts per million (ppm). Monitoring of specific levels of hydrogen sulfide, ethane, butane and propane was not carried out. Monitoring of specific levels of methane was carried out. The LEL/O₂ meter was a GASTECH Model GT-201 with a minimum detectable level of oxygen (OXY) 0.1 ppm. The instruments were rented from Environmental Instruments, located in Concord, CA.

The initial work plan required air monitoring of the breathing zone surrounding the drill rig operation, primarily for worker safety. Readings were also taken of the soil samples as the sampler was extracted from the borehole. Generally, a minimum of three PID (OVM), LEL/O₂ (OXY) and methane (CH4) readings were each taken during drilling and sampling of all portal, station and tunnel borings. Along the tunnel alignment, three readings were typically taken within the 60-foot tunnel zone.

Readings (OVM, LEL/O_2 and methane) are shown at the corresponding borehole depths on the Logs of Borings (Appendix 1).

3.3 Cone Penetration Testing Program

3.3.1 Overview

The CPT program commenced on March 28, 2007. CPTs were conducted during two sequences March 28, 2007 through April 5, 2007 and August 13, 2007 through August 17, 2007. In addition to continuous CPT soundings, downhole seismic shear wave velocity measurements were obtained at several locations. Of the 25 CPTs, 13 were completed at the portals, six (6) were performed at the three proposed underground stations, and six (6) were completed at locations along the tunnel alignment. CPT frequencies and depths were selected based on design needs. The locations of all of the CPTs are presented in Figure 3-1 and Table 3-2.

3.3.2 Conventional CPTs

A total of 25 CPTs were conducted. The following sections describe the equipment, procedures, locations and results of the CPT program.

3.3.2.1 Equipment

Equipment utilized in conducting CPTs included a self-contained 25-ton CPT rig with hydraulic pushing system, a piezocone, cone rods and casing, a data acquisition system and a support truck and trailer.

The CPTs were performed using an International 25-ton capacity truck mounted rig with a self-contained power supply unit. The rig was equipped with hydraulic jacking systems to lift and level the pushing platform. The "dead weight" of the rig provided the reaction weight necessary for advancing the CPT tools. The conventional instrumented piezocone assembly used for the SVRT project included a cone tip with a 60-degree apex and a cone base area of 15 cm^2 , a sleeve segment with a surface area of 200 cm^2 , and a pore pressure transducer near the base (shoulder) of the cone tip (designated the u2 location).

Fugro's CPT cone rods are manufactured from high tensile strength steel and have a cross sectional area adequate to sustain up to 700 tsf tip pressure without buckling. A steel casing was generally placed in the upper clayey strata and was typically extended to depths of 20 to 75 ft, when used. The casing provided lateral support to prevent bending or buckling of the slender 10-foot sections of steel rod as they were hydraulically pushed into the ground.

The data acquisition system converted an analog signal from the cone penetrometer to a digital signal, which was monitored, recorded and presented in near-real time on the laptop computer. A support pickup truck/trailer contained a grout pump and mixer to properly abandon CPT holes after completion, a pressure wash system for cleaning the work area and maintaining clean equipment throughout field program, a steam cleaning system for environmental protocol if needed, and tools and supplies for daily operations.

3.3.2.2 Procedures

Prior to testing, the truck was lifted up and leveled on four pads to provide a stable reaction for the cone thrust. During the test, the instrumented cone was hydraulically pushed into the ground at the maximum rate of about 2 centimeters per second (cm/s), and readings of cone tip resistance, sleeve friction, and pore pressure were digitally recorded every second. As the test progressed, the CPT operator monitored the cone resistance and its deviation from verticality. Information collected during a push was stored digitally. The data files included project description and location, operator, data format information, and other pertinent information about the sounding. After completing a CPT, the hole was backfilled with cement-bentonite grout by the tremie method using a grout pump and mixer. The surface of the CPT holes was finished with rapid setting quickcrete. Grout mix and grouting procedures were completed in accordance with Santa Clara Valley Water District regulations. The work area was cleaned per City of San Jose requirements.

Fugro conducted the CPTs in general accordance with ASTM D5778. The continuous CPT soundings were typically advanced to refusal (500 to 700 tsf tip pressure), which ranged from approximately 34 to 149.9 ft in depth. Each CPT generally lasted between 2 and 5 hours.

More detailed descriptions of the procedures and equipment specifications of the CPT operations can be found in Appendix 2.

3.3.2.3 Locations

CPTs performed along the proposed tunnel alignment ("tunnel CPTs") were spaced at 200 to 300-foot intervals (combining both the 35% and the P2 Programs). CPTs performed at the proposed stations ("station CPTs") were spaced approximately 100 ft apart.

CPTs performed at the two portal locations were performed to obtain additional soil information at locations where the alignment had shifted laterally or moved north. CPTs at the portal locations were generally planned to depths a minimum of twenty feet below the maximum depth of the portal structure or cutoff wall.

CPTs at the proposed Alum Rock Station, Downtown San Jose Station and Diridon/Arena Station were generally planned to depths of 150 ft. At all but one location the CPT probe met refusal at shallower depths, which ranged from 43.7-ft below ground surface (bgs) to 115.5-ft bgs.

Tunnel CPTs were planned based on potential realignments of the tunnel or where previous soil information was not obtained due to tunnel depth changes. CPTs were generally planned to depths of at least 20 ft below the tunnel invert, based on the tunnel alignment at the time of drilling, but were terminated shallower at several locations due to refusal.

3.3.2.4 Results

The CPT logs present the measured cone (tip) resistance in tons per square foot (tsf), the measured sleeve friction in tsf, the friction ratio in percentage (including the Soil Behavior Type according to Robertson and Campanella in 1990 (see CPT correlation chart in Appendix 2, Key to CPT logs), the measured pore pressure in tsf at the u2 sensor location, and the estimated soil undrained shear strength (s_u) in ksf. Some of the data presented on the CPT logs is interpreted by Fugro and are based on assumptions that need to be verified with site-specific data. The interpreted data include the soil behavior type and the estimated soil undrained shear strength. The soil behavior type and estimated undrained shear strength are influenced by the soil unit weight (and resulting in-situ total stress condition), and the N_k-value. The range of selected N_k values was based on calibrations performed by Fugro comparing the CPT tip resistance with the strength determined from field vane shear testing in adjacent borings. A more detailed discussion regarding the undrained shear strength calibration is presented in Appendix 2.

The CPT logs show the range of undrained shear strengths calculated from CPT cone tip resistances (corrected for unequal end area effects) based on cone bearing capacity factors (N_k) of 12 and 15. CPT sounding logs for the 25 CPTs are presented in Appendix 2.

3.3.3 Seismic CPTs

A total of 12 SCPTs were conducted. The following sections describe the equipment, procedures, locations and results of the SCPT program.

3.3.3.1 Equipment

Downhole seismic shear wave velocity measurements were conducted using Fugro's seismic CPT system. The seismic CPT system includes the basic thrust system, a seismic cone assembly, a seismic wave source, and a digital recording seismograph.

3.3.3.2 Procedures

The seismic cone assembly is similar to the conventional cone assembly, with the addition of a three-component array of geophones. The geophones are orthogonally mounted inside the assembly about 15 cm above the cone tip. The seismic CPT system consists of a heavy metal beam that is positioned parallel to the cone truck and held firmly against the ground by the weight of the beam and additional weights placed on it. The beam is positioned at least 10 ft from the cone rods. Striking each end of the beam with a 12-pound sledgehammer generates seismic waves. The hammer blow from opposite ends of the beam generates shear waves with opposite polarity. Conventional CPT testing was temporarily halted at 5-foot intervals to perform the seismic testing and collect seismic data.

The hammer blows trigger the seismograph to record the time histories of the generated seismic waves as they travel through the soil. If the shear wave signal is clearly defined, the waveform is selected for stacking and the arrival time of the wave is recorded. Additional blows were similarly examined and stacked. A more detailed discussion regarding the signal selection and stacking is presented in Appendix 3. Waveforms are digitally recorded and saved in the seismograph's hard drive for further processing. After a complete set of seismic data is recorded, the cone is advanced to the next depth, and the procedure is repeated until the hole reaches the required depth or refusal.

The shear wave arrival time at each depth is determined from the recorded "stacked" signals. The average arrival time is determined and based on the horizontal offset of the seismic source from the CPT rods, a strike angle is estimated. The average vertical arrival time is determined by taking the sine of the strike angle. The incremental seismic velocity is the difference in vertical average arrival time between two depth increments, divided by the length of the increment (typically 5 ft). This seismic velocity is presented on the seismic CPT logs (Appendix 2).

Seismic CPT testing was performed in accordance with ASTM D577 and "Seismic Cone Penetration Test," by Robertson, Campanella, and Gillespie (1986).

3.3.3.3 Locations

Seismic shear wave velocity tests were conducted at 12 locations. Tests were performed at both portal locations, at each of the proposed station locations and along two stretches of the tunnel alignment.

Seismic cone testing was successfully performed at the following locations:

- Two Seismic CPTs at the East Portal (CPT-158 and CPT-161)
- Two Seismic CPTs at Alum Rock Station (CPT-162 and CPT-172)
- One Seismic CPT at the proposed Coyote Creek realignment to the south of Santa Clara St. (CPT-165)
- Two Seismic CPTs at Downtown San Jose Station (CPT-167 and CPT-169)
- Two Seismic CPTs at Diridon/Arena Station (CPT-168 and CPT-179)
- One Seismic CPT at the deeper tunnel alignment near the intersection of Asbury St. and Stockton Ave. (CPT-171)
- Two Seismic CPTs at the West Portal (CPT-173 and CPT-174)

The locations of the 12 seismic CPTs are shown in Figure 3-1.

3.3.3.4 Results

CPT sounding logs for the 12 seismic CPTs are presented on the Logs of seismic CPTs in Appendix 3. The seismic CPT logs provide graphical plots of the same data presented on conventional CPT logs, along with measured shear wave velocity in ft per second (fps).

3.3.4 CPT Completion and Abandonment

Forester

CPT locations were generally terminated at refusal or at the planned depth.

Prior to completion of the CPT, the Santa Clara Valley Water District (SCVWD) was contacted for notification of grouting. After CPT was performed to the planned depth or was terminated due to refusal, the CPT hole was grouted from the bottom up using a tremie pipe per SCVWD requirements. All Investigation Derived Waste (IDW) and any loose soil or cuttings from the CPT operation were placed in 55-gallon drums and removed from site. All drums containing IDW were characterized, labeled, and disposed of in accordance with applicable regulatory requirements. Integrated Waste Management (IWM), a subcontractor of Fugro West, processed all drums containing IDW.

Pavement removed to perform CPTs was patched using a non-metallic, nonshrink, quick-setting grout.

						·	-	•
Exploration	Completion	Boring	Station		set	Structure	RW or S*	Purpose
-	Date	Depth (ft)	(ft)	(ft)	R/L	Туре		
East Portal	0/4/0007	50.5	504.00	00		Dentel		Obtain information production dealing and abits departs and and
BH-101	6/4/2007	52.5	564+38	22	L	Portal	RW	Obtain info where portal and alignment shifted north and east.
BH-82	6/18/2007	92.5	570+08	22	L	Portal	RW	Obtain info where portal and alignment shifted north and east.
Tunnel from East	Portal to Alui	n Rock St	ation					
No borings performed.						Tunnel		
Alum Rock Station					-			
BH-83	8/28/2007	200.0	599+84	26	R	Station	S	Explore deeper strata and obtain info for pumping test program.
BH-84	7/16/2007	207.5	603+12	148	L	Station	RW	Explore deeper strata.
BH-85	7/10/2007	202.5	606+32	51	L	Station	RW	Explore deeper strata. Define sand layer at El. +10. MW location.
BH-86	7/31/2007	190.0	609+08	83	R	Station	S	Explore deeper strata and obtain info for pumping test program.
Tunnel from Alum	Rock Station	to Cross	over/Dov	vntov	vn St	ation		
BH-87	7/20/2007	201.5	648+42	103	L	Tunnel	RW	Explore deeper strata near proposed vent structure.
BH-88	6/18/2007	112.5	645+03	66	R	Tunnel	RW	Obtain info for potential southern tunnel alignment at Coyote Creek.
Crossover/Downto	own Station							
BH-89	6/8/2007	201.5	693+74	72	R	Station	RW	Explore deeper strata and obtain info for pumping test program.
BH-90	6/15/2007	211.5	699+59	16	L	Station	RW	Explore deeper strata.
BH-105	6/23/2007	51.5	701+51	2	R	Station	RW	Investigate for liquefaction at 1st St.
BH-104	10/4/2007	200.0	703+72	78	R	Station	S	Explore deeper strata and obtain info for pumping test program.
BH-91	6/22/2007	196.5	704+16	13	L	Station	RW	Explore deeper strata.
Tunnel from Cross	sover/Downto	own Statio	n to Dirio	don/A	rena	Station		
No borings performed.						Tunnel		
Diridon/Arena Stat	tion							
BH-92	11/17/2007	200.0	736+62	35	R	Station	S	Explore deeper strata and obtain info for pumping test program.
BH-93	6/27/2007	211.5	738+61	84	L	Station	RW	Station entrances and deeper stratigraphy.
BH-94	8/10/2007	200.0	741+61	82	R	Station	S	Explore deeper strata and obtain info for pumping test program.
Tunnel from Dirido	n/Arena Sta	tion to We	st Portal					
BH-81**	7/22/2005	150.5	789+62	19	L	Tunnel	RW	Explore deeper strata for stratigraphy and perform vibration monitoring
BH-95	7/24/2007	101.5	774+14	49	R	Tunnel	RW	Unexplored length of tunnel alignment.
BH-102	6/25/2007	80.0	796+49	19	L	Tunnel	RW	Explore deeper strata for stratigraphy and grain size info.
BH-103	6/27/2007	90.5	798+17	19	L	Tunnel	RW	Explore deeper strata for stratigraphy and grain size info.
BH-106	6/27/2007	90.0	800+21	31	L	Tunnel	RW	Explore deeper strata for stratigraphy and grain size info.
West Portal						-		
BH-96	9/12/2007	135.0	831+98	5	R	Portal	S	Explore deeper strata and obtain info for pumping test program.
BH-97	6/11/2007	91.5	833+53	6	R	Portal	RW	Obtain info where portal moved north.
BH-98	7/3/2007	61.5	836+41	42	R	Portal	RW	Obtain info where portal moved north.
BH-99	6/29/2007	81.5	838+21	9	L	Portal	RW	Obtain info where portal moved north.
BH-100***	7/3/2007	41.5	842+89	15	L	Portal	RW	Obtain info where portal moved north.
811100	110/2001	1 11.0	312100	10		i ontai	1.11	

Table 3-1 Summary of Exploratory Borehole Program

Note: Stations and offsets based on the April 25, 2008 S1 track alignment.

* RW = Rotary Wash Boring, S = Sonic Boring. Sonic boring logs are included in the Pumping Tests Data Report (HMM/Bechtel, 2008).

** BH-81 was completed near the end of 35% design phase and therefore could not be included in the 35% GDR. Information from BH-81

is included in this Phase Two - 65% Engineering Design - Geotechnical Data Report.

*** Stationing for BH-100 shown is based on Western Area Guideway alignment stationing (outside of Central Area Guideway alignment stationing).

	Commission		01-11-1			Company	Calamit						
		CPT Depth (ft)	Station Offset		Structure Seismic Type Cone?		Purpose						
East Portal	Date	Deptil (It)	(1)	(1)		туре	Coner						
CPT-158	04/03/07	45.0	562+47.2	30.3	L	Portal	Y	Obtain info where portal and alignment shifted north and east.					
CPT-159	04/04/07	45.4	563+47.5	29.3	L	Portal	N	Obtain info where portal and alignment shifted north and east.					
CPT-160	04/04/07	45.4	565+38.8	36.8		Portal	N	Obtain info where portal and alignment shifted north and east.					
CPT-161	04/04/07	105.0	568+89.3	26.0		Portal	Y	Obtain info where portal and alignment shifted north and east.					
Tunnel from Eas				20.0	-	Tona	1	Obtain nito where portal and alignment shinted north and east.					
No CPTs performed.			otation			Tunnel							
Alum Rock Stati						Tunner							
CPT-162	08/13/07	73.2	600+71.5	139.5	L	Station	Y	Obtain additional deeper info on soil stratigraphy.					
CPT-172	08/16/07	113.4	607+63.3	65.5		Station	Y	Obtain additional deeper line of son stratigraphy.					
Tunnel from Alu		-					I						
	1					r	N	Obtain info for potential equithern tunnal alignment at Causta Creak					
CPT-163 CPT-164	03/31/07	95.1 86.0	636+29.4 639+53.6	181.7 203.5		Tunnel Tunnel	N N	Obtain info for potential southern tunnel alignment at Coyote Creek					
	03/28/07						N Y	Obtain info for potential southern tunnel alignment at Coyote Creek					
CPT-165	08/16/07	77.4	642+20.2			Tunnel		Obtain info for potential southern tunnel alignment at Coyote Creek					
CPT-166	03/29/07	89.2	649+27.5	193.6	L	Tunnel	N	Obtain info for potential southern tunnel alignment at Coyote Creek					
Crossover													
No CPTs performed.					Ļ	Station							
	· ·	·						ized station entrance locations)					
CPT-167	04/02/07	90.7	701+08.6	10.8		Station	Y	Investigate for liquefaction at 1st St.					
CPT-169	08/17/07	85.4	706+79.2			Station	Y	Obtain additional info at station entrance location.					
Tunnel from Cro		ntown Sta	tion to Diri	idon/A	rena								
No CPTs performed.						Tunnel							
Diridon/Arena S	tation					-							
CPT-168	04/05/07	149.9	734+51.2	100	L.	Station	Y	Obtain additional deeper info on soil stratigraphy.					
CPT-179	08/14/07	115.5	740+58.3	109	L	Station	Y	Obtain additional info at station entrance location.					
Tunnel from Diri	don/Arena S	tation to V	Vest Porta										
CPT-170	03/30/07	43.7	793+76.9	48.2	R	Tunnel	N	Investigate deeper stretch of alignment along Taylor St.					
CPT-171	03/30/07	74.8	794+95.9	41.8	R	Tunnel	Y	Investigate deeper stretch of alignment along Taylor St.					
West Portal													
CPT-173	03/29/07	38.4	828+05.7	91.3	L	Portal	Y	Investigate stretch of alignment with limited data.					
CPT-173A	03/31/07	33.8	828+02.5	92.6	L	Portal	Ν	Investigate stretch of alignment with limited data.					
CPT-173B	03/31/07	81.5	828+00.0	94.9	L	Portal	Ν	Investigate stretch of alignment with limited data.					
CPT-174	03/31/07	55.6	834+47.1	20.8	L	Portal	Y	Obtain info where portal moved north.					
CPT-174A	03/31/07	33.8	834+50.1	20.8	L	Portal	N	Obtain info where portal moved north.					
CPT-175	03/28/07	80.5	835+67.9	20.0	L	Portal	Ν	Obtain info where portal moved north.					
CPT-176	03/28/07	45.5	837+51.4	16.4	L	Portal	Ν	Obtain info where portal moved north.					
CPT-177	03/30/07	45.5	838+85.9	18.7	L	Portal	N	Obtain info where portal moved north.					
CPT-178*	03/29/07	45.5	841+50.2	15.4	L	Portal	N	Obtain info where portal moved north.					

Table 3-2 Summary of Exploratory Cone Penetration Testing Program

Note: Stations and offsets based on the April 25, 2008 S1 track alignment. * Stationing shown is based on Western Area Guideway alignment stationing (outside of Central Area Guideway alignment stationing).

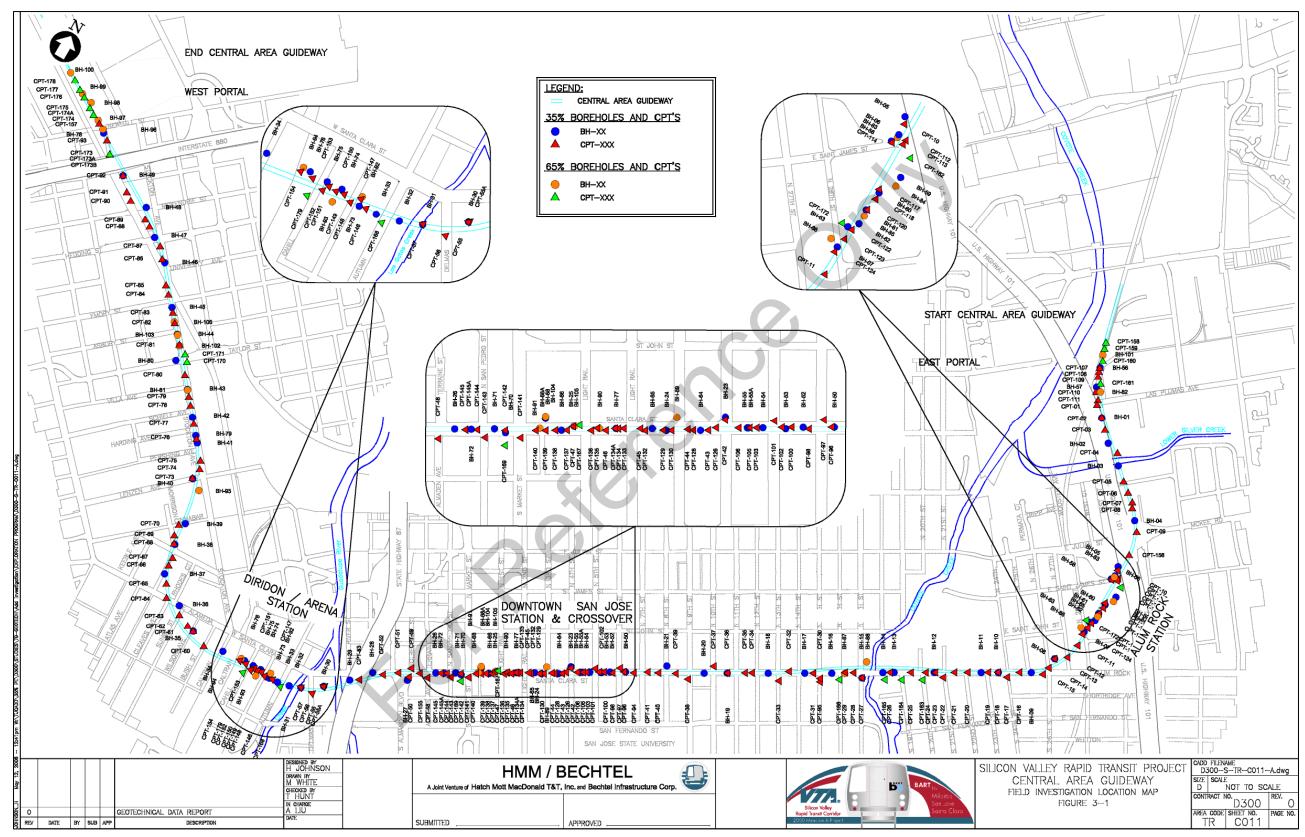


Figure 3-1 Field Investigation Location Map

12/16/2008

Silicon Valley Rapid Transit Project – Central Area Guideway Geotechnical Data Report – Phase Two 65% Engineering Design Investigation

3.4 Groundwater Dissolved Gas Sampling

Locus Technologies performed two phases of groundwater sampling and laboratory analyses for 30 groundwater wells during 65% ED geotechnical investigation phase. Phase 1 consisted of sampling and testing groundwater from 12 wells on May 21st and 22nd, 2008. Phase 2 consisted of sampling and testing groundwater samples from the remaining 18 wells on July 22nd and 23rd, 2008. The samples were obtained using low-flow purge methods in accordance with Environmental Protection Agency (EPA) "Ground-Water Sampling Guidelines for Supefund and RCRA Project Manager (2002)". All samples were obtained in airtight bottles. In addition to test samples, duplicate, "rinsate blank", and "travel blank" samples were also collected for quality control purposes. The phase 1 samples were shipped to Bioremediation Consulting, Inc. (BCI) in Watertown, Massachusetts and Gusmer Enterprise, Inc. (Gusmer) in Napa, California for laboratory analysis. Phase 2 samples were sent only to BCI.

BCI analyzed the water samples for methane, ethane, ethanethiol, argon, nitrogen, carbon monoxide, carbon dioxide, ammonia-nitrogen, sulfide, oxygen, hydrogen, and hydrogen sulfide. Gusmer analysed the samples for free and total Sulphur dioxide. Phase 2 samples, tested after Phase 1 samples, were analyzed for methane, nitrogen, carbon dioxide and sulfide by BCI.

A short summary report including the summary of sampling, laboratory analysis, and quality control review is provided in Appendix 10. Field activity logs, water sampling logs, chain of custody records, and laboratory analytical reports are presented in the attachments to the report, which are also included in the Appendix. The laboratory test results are summarized in Tables 3-3a and 3-3b.

; or R'

											Samp	le ID								ľ
	Det.					MW-	Μ	MW-3D-	MW-3D	MW-	MW-			TW-	TW-	TW-	TW-	TW-	TW-	
	Lim.	Units	4767	4768	4769	2E	W -	(r)	(r)-dup	5A	6J	ST-3	ST-5	2B	2B-	5A	6A	6B	8A	Trip Bl
Dissolved Gas, water matrix																				
Methane	0.2	μg/L	4.4	0.2	0.2	2.9	4.6	98	107	9.2	16	6.9	6.1	75	70	0.5	95	0.5	31	0.6
Ethane	0.2	μg/L	0.3	< 0.2	< 0.2	< 0.2	0.2	< 0.2	< 0.2	0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.2	< 0.2	< 0.2	< 0.2
Ethanethiol	0.07	mg/L	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07	< .07
Argon	2	mg/L	< 2	< 2	< 2	< 2	< 2	2	1.6 J	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2	n.a.
Nitrogen	7	mg/L	34	15	15	33	36	34	28	25	24	33	32	33	29	34	24	24	33	21
Carbon monoxide	0.5	mg/L	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Carbon dioxide	0.2	mg/L	16	0.4	0.4	17	17	20	20	8	20	23	21	16	15	32	49	20	17	< 0.5
Free SO2		ppm	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5		<5 ppm	<5 ppm	<5 ppm	<5 ppm	
Total SO2		ppm	<5	<5	<5	<5	<5	<5		<5	<5	<5	<5	<5		<5 ppm	<5 ppm	<5 ppm	<5 ppm	
Chemical Tests																				
NH3-N Hach 8155	0.02	mg/L	0.03			< 0.02	< 0.02	0.06		0.10	0.02	< 0.02	0.08	0.03		0.10	0.04	0.52	0.03	
sulfide Hach 8131	0.003	mg/L	0.004	< 0.003	< 0.003	0.007	0	0.008		0	0.010	0.01	< 0.00	0.01		0.005	0.005	< 0.003	0.009	n.a.
Dissolved O2 Hach 8166		mg/L	n.a.	8.3	9.8	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.	n.a.		n.a.	n.a.	n.a.	n.a.	
Dissolved H2, water matrix										ŀ.										
Sample Dilution			1	1	1	1	1	1		1	1	1	1	1		1	1	1	1	
Sample Result	0.3	nM	1.6	4.9	2.8	1.1	0.9	0.4		1.0	0.5	1.3	< 2	0.8		0.9	0.8	1.2	0.7	
Field DO			2.92	n.a.	n.a.	2.8	2.9	2.98		1.74	4.45	4.01	2.62	2.58		1.81	1.37	4.98	1.97	

Table 3-3a Summary of Phase 1 Laboratory Test Results

Table 3-3b Summary of Phase 2 Laboratory Test Results

			Sample ID														
	Det. Lim.	Units	4783	4784	4785	4786	MW-1	MW-5B	MW-6D	NW-01	NW-05	NW-6	ST-10	ST-11	ST-12	ST-13	Trip Bl
Dissolved Gas, water matrix																	
Methane	0.2	μg/L	35	0.7	1.8	1.0	0.5	0.9	1.9	2.0	2.1	2.1	0.1	0.4	1.0	1.0	0.4
Nitrogen	7	mg/L	27	15	22	18	17	28	21	35	20	26	27	27	23	27	29
Carbon dioxide	0.2	mg/L	23	< 0.2	66	< 0.2	1.5	37	72	11	2.7	12	17	17	110	56	0.7
Chemical Test											Ť						
sulfide Hach 8131	0.01	mg/L	0.012	< 0.01	0.017	< 0.01	0.019	< 0.01	0.010	0.025	< 0.11 (1)	0.011	< 0.01	< 0.01	< 0.01	0.015	< 0.01
	(1) interference from turbidity; Hach turbidity interference correction procedure unsuccessful																
							San	ple ID]				
				MW-	MW-	MW-	MW-					ST-8	1				
	Det. Lim.	Units	MW-2C	2G	3C	4 A	4A lab	ST-1	ST-2	ST-7	ST-8	lab					
Dissolved Gas, water matrix,																	
Headspace GC, EPA meth 5021A																	
Methane	0.2	μg/L	7.7	39	9.9	8.3	8.2	2.0	31	1.5	1.7	1.3					
Nitrogen	7	mg/L	32	26	35	24	24	28	22	31	37	37					
Carbon dioxide	0.2	mg/L	< 0.2	24	22	< 0.2	< 0.2	38	3.7	29	31	31					
Chemical Test	0.01		0.01	0.000	0.01	0.022		0.01	0.017	0.01	0.01						
sulfide Hach 8131	0.01	mg/L	< 0.01	0.028	< 0.01	0.033		< 0.01	0.017	< 0.01	< 0.01						
	<	.0	5	2													

This page is left intentionally blank.

Reference

4.0 Laboratory Testing

4.1 Introduction

The laboratory soil testing program for the Phase 2 65% Design Investigation expands the information gained from the 10% Conceptual Engineering (CE) Investigation (URS, 2003) and the 35% Preliminary Engineering (PE) Investigation (HMM/Bechtel, 2005a). The laboratory tests were performed from July 2007 through November 2007. In general, the majority of soil samples tested for classification purposes were selected from the strata that were relatively unexplored in previous investigations. Parikh Consultants, Inc. (PCI) in Milpitas, CA, performed the majority of index and classification testing, such as visual classifications, natural moisture contents, fines content, sieve analyses, sieve and hydrometer analyses, Atterberg Limits, and unit weights.

Additional specialty soil testing was performed on selected samples at various laboratories throughout the United States and outside the country. Some of these laboratories also performed classification and index tests on the samples used in the specialty testing. The soil tests, and the laboratories where they were performed, are summarized in Table 4-1. The testing program is discussed in subsequent sections. The test results are provided in the Appendices listed in Table 4-1.

This page is intentionally left blank.

orReterno

Silicon Valley Rapid Transit Project – Central Area Guideway Geotechnical Data Report – Phase Two 65% Engineering Design Investigation

Test Type	Parikh Consultants, Inc., Milpitas, CA	Fugro Consultants, Inc. (Fugro), Houston, TX	SGI Testing Services (SGI), Norcross, CA	Shanon & Wilson, Inc. (S&W), Seattle, WA	Cooper Testing Laboratory (Cooper), Palo Alto, CA	Praad Geotechnical, Inc. (Praad), and UCLA, Los Angeles, CA	CAMET Research, Inc. (CAMET), Goleta, CA	Chemistry of Concrete, Goleta, CA	Twining Laboratories of Southern California, Long Beach, CA	Pacific Materials Laboratory, Goleta, CA	SINTEF, Trondheim, Norway	Analytic Consulting Group, Inc., Ventura, CA	University of Texas at Austin, Geotechnical Laboratory,
Visual Classification	Appendix 4												TX
Moisture Content	Appendix 4	Appendix 5		Appendix 7		Appendix 9							
Unit Weight	Appendix 4	Appendix 5				Appendix 9							
Sieve Analyses	Appendix 4		Appendix 6		Appendix 8				·		Appendix 11		
Consolidation						Appendix 9							
Sieve Analysis and Hydrometer	Appendix 4						0			Appendix 12			
Materials Finer than No, 200 Sieve	Appendix 4						-C						
Atterberg Limits	Appendix 4	Appendix 5		Appendix 7		Appendix 9					Appendix 11		
X-Ray Radiography		Appendix 5				0							
Cyclic Simple Shear						Appendix 9							
Cyclic Triaxial Shear		Appendix 5											
Large Scale Direct Shear			Appendix 6		Ċ								
Direct Shear					Appendix 8								
Sticky Limit				Appendix 7									
Maximum Index Density			Appendix 6		Appendix 8								
Minimum Index Density			Appendix 6		Appendix 8								
Petrography												Appendix 12	
X-ray Fluorescence (XRF)								Appendix 12					
X-ray powder Diffraction				$\mathbf{\cap}$			Appendix 12						
(XRD)													
Clay ID							Appendix 12						
Durability									Appendix 12				
Soil Abrasion											Appendix 11		Appendix 11

Table 4-1 Laboratory Testing Program – List of Appendices

Silicon Valley Rapid Transit Project – Central Area Guideway Geotechnical Data Report – Phase Two 65% Engineering Design Investigation

4.1.1 Laboratory Visual Classification

Laboratory visual classification of soils was carried out in general accordance with ASTM D2487, Test Method for Classification of Soils for Engineering Purposes, and ASTM D2488, Practice for Description and Identification of Soils (Visual-Manual Procedures). Visual classification of soils collected in undisturbed Shelby tubes was performed on the soil at the bottom of the tube after removing excess disturbed material.

101 Geo-barrel samples were obtained as continuous cores, and were classified at regular intervals or when there was a change in material type. Field classifications were adjusted based on laboratory visual classifications and supplemented with results of laboratory testing. Final classifications appear in the boring logs (Appendix 1), and in the laboratory classification tests results (Appendix 4) of this report.

4.1.2 Moisture Content

Moisture content testing was performed in general accordance with ASTM D2216, Method for Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures. The tests were assigned to a selected portion of samples from each boring at varying depths.

The moisture content tests were generally conducted within three (3) days of the samples arriving at PCI's laboratory. The moisture content tests on specialty test samples were not performed within three (3) days because more time was required for their selection and testing. Shelby tube samples that were not tested, or that were stored for future testing, were sealed with heated microcrystalline wax. The 101 Geo-barrel core samples were not tested for moisture content because their sampling method kept them exposed for some time during sampling. Moisture content data appears at the corresponding sample depth on the boring logs in Appendix 1 and Figures and Tables in Appendices 4, 5, 7 and 9 (for PCI, Fugro West, Inc. (FWI), Shannon & Wilson, Inc. (S&W), and Praad Geotechnical/UCLA (PGI/UCLA) data, respectively).

4.1.3 Unit Weight

Unit weight testing was performed in general accordance with U.S. Army Corps of Engineers "Engineer Manual", EM 1110-2-1906 (1970). The tests were assigned to portions of the tube samples from each boring at varying depths.

The total unit weight was obtained by dividing the weight of a sample by the volume of the sample container. The dry unit weight was obtained by oven drying the sample and measuring the change in weight. This change in weight was used to determine the moisture content. The 101 Geo-barrel core samples were not tested for unit weight because their sampling and storing methods do not allow accurate determination of volumes. Dry unit weight data appear at the

corresponding sample depth on the boring logs in Appendix 1 and figures and tables in Appendices 4, 5 and 9 (for PCI, FWI and PGI/UCLA data, respectively).

4.1.4 Sieve Analysis

Sieve analysis testing was carried out in general accordance with ASTM D422, Standard Method for Particle-Size Analysis of Soils. Sieve analyses were assigned for granular samples obtained at varying depths.

As applicable, test results included percentage by weight finer than each of the ASTM Sieves 3 in., 2 in., 1-1/2 in., 1 in., 3/4 in., 1/2 in., 3/8 in., No. 4, No. 10, No. 20, No. 40, No. 60, No. 100, and No. 200 for each sample tested. Test results for sieve analyses in the form of gradation curves (particle size versus percent passing by dry unit weight) can be found in Appendices 4, 6 and 8 (for PCI, SGI and Cooper Testing Laboratory (CTL) data, respectively). Also, the fines content determined by the percentage (by weight) of material passing the No. 200 sieve is indicated in the boring logs (Appendix 1).

4.1.5 Sieve and Hydrometer Analysis

Combined sieve and hydrometer analyses were performed in general accordance with ASTM D422. These tests were performed on a limited number of fine-grained and coarse-grained samples obtained at varying depths.

The results are presented in a summary table and as gradation curves in Appendix 4. The fines content determined by the percentage of material (by weight) passing the No. 200 sieve is also reported in the boring logs (Appendix 1).

4.1.6 Atterberg Limits

The Liquid Limit, Plastic Limit, and Plasticity Index were determined in general accordance with ASTM D4318, Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. These tests were assigned for fine-grained soils obtained at varying depths.

The test results are shown on the boring logs in Appendix 1 (for PCI's data, respectively), and Figures and Tables in Appendices 4, 5, 7 and 9 (for PCI, FWI, Shannon & Wilson and PGI/UCLA data, respectively).

4.1.7 Materials Finer than No. 200 Sieve

The determination of the total amount of material finer than the No. 200 Sieve was performed in general accordance with ASTM D1140, Standard Test Method for Amount of Material in Soils Finer than the No. 200 Sieve. The test results are presented on the boring logs in Appendix 1 as well as on the gradation curves in Appendix 4.

4.2 Specialty Geotechnical Testing

Specialty geotechnical testing consisted of evaluating shear strength properties and maximum/minimum index densities of sandy and gravelly soils, dynamic soil properties of silty sand to sandy silt and clayey soils, and adhesive properties of high-plasticity clays.

4.2.1 Direct Shear (Conventional)

Direct shear tests were performed on sand samples to measure the drained shear strength parameters, friction angle (ϕ ') and cohesion (c'). The tests were performed in general accordance with ASTM D 3080, Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Condition.

Three (3) disturbed sand samples were collected from borings MW-2D, MW-6K, and MW-4A that were performed for the pumping test. The boring logs and laboratory test results for these borings are presented in Pumping Test Data Report (HMM/Bechtel, 2008). The samples were then transported to CTL for testing. Maximum and Minimum index density tests and sieve analyses were performed on the samples before performing direct shear tests (See Sections 4.2.4 and 4.1.4, respectively). A total of 27 initial direct shear tests were performed: three (3) samples at three (3) relative densities under (3) confining pressures. Four additional tests were performed for one sample (MW-4A) at four different confining pressures. Gravel size particles greater than 4.75 mm were sieved out from the specimens to eliminate boundary effects of test apparatus. Each specimen was prepared by compacting to a specified relative density ranging from 65 % to 95 % based on the minimum and maximum densities determined. The specimen was then subjected to a specified surcharge pressure before testing at a constant rate of strain. It should be noted that one of the samples (MW-6K) yielded a fines content greater than 15%, thus invalidating the maximum density. Thus, the relative density values for this sample will be biased and therefore correlations between relative density and strength should not be used. The test results are provided in Appendix 8.

Additionally, one (1) disturbed sand sample obtained using Modified California sampler was also shipped to CTL to perform three (3) direct shear tests at different normal pressures.

4.2.2 Large Scale Direct Shear

Larger scale direct shear tests were performed on gravel samples to measure the drained shear strength parameters, friction angle (ϕ ') and cohesion (c'). The tests were performed in general accordance with ASTM D 3080. The difference between conventional and large-scale direct shear tests is the size of the test specimens. The test specimens in large-scale direct shear tests were 1-foot square in cross-section and 5 inches thick. The larger specimen size allowed the testing of gravel size particle up to 1.25 inches. Testing of specimens containing larger

than 1.25 inches gravel size particles is not conventionally performed in United States.

Three (3) disturbed gravel samples from the borings performed for the pumping test program were transported to SGI Laboratories for testing. Approximately 100 lb of material was collected for each specimen. Maximum/Minimum index density tests, and sieve analyses were performed on the samples before performing direct shear tests (See Sections 4.2.4 and 4.1.4, respectively). A total of 11 direct shear tests were performed. Each specimen was prepared by compacting to a specified relative density ranging from 65 % to 95 %. The specimen was then subjected to a specified surcharge pressure before testing at constant rate of strain. The test results are provided in Appendix 6.

4.2.3 Sticky Limit

High plasticity (fat) clay is expected to adhere or stick to metal surfaces under certain conditions of plasticity and water content, thus affecting tunneling and excavation operations. Therefore, for high plasticity clays, the concept of adhesion or sticky limit has been introduced and is defined as the lowest water content at which soil adheres to metal tools. This test is not standardized by the ASTM and is uncommon in typical geotechnical applications. The tests were performed following the procedure developed by S & W (Appendix 7).

A total of 32 samples were tested for sticky limits. The samples were tested in two batches. The first batch consisted of 15 samples from the 35% PE and Phase 2 65% Engineering Design investigation. The samples, classified as lean and fat clay visually and/or by laboratory tests by PCI, were sent to S&W who also determined Atterberg Limits. Lean clay samples were included for comparison with fat clays. The second batch consisted of 17 clay samples from Phase Two 65% Engineering Design investigation and Pumping Test investigation (Pumping Test Data Report, HMM/Bechtel, 2008). Sticky limit tests were not performed on lean clay samples from the second batch. The samples from 35% PE investigations and Pumping Test investigations were used because relatively few high plasticity clay samples were found in the Phase 2 65% Engineering Design Investigation. The test results are provided in Appendix 7.

4.2.4 Maximum and Minimum Index Density

Maximum and minimum index density tests were performed on sand and gravel samples prior to direct shear tests by CTL and SGI, respectively. For test specimens at CTL, gravel size particles retained on No. 4 (4.75 mm) sieve were removed. For test specimens at SGI, particles retained on 1.25-inch sieve were removed. The maximum index density tests were performed in general accordance with ASTM D 4253, Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table. The minimum index density tests were performed in general accordance with ASTM D 4254, Standard

Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density.

Three (3) disturbed sand and three (3) gravel samples were sent for testing to CTL and SGI, respectively. For maximum index density, each oven-dried test specimen was placed in a mold and subjected to a constant surcharge of 2 pound per square inch (psi). The specimen was then electromagnetically vibrated for 8 to 10 minutes. The maximum density was calculated by dividing the mass of the densified soil by its volume (average height of densified soil times area of mold). For minimum index density, each specimen was poured into a container of known volume in such a manner that bulking and particle segregation was prevented and compaction minimized. The test results for gravels and sands are provided in Appendices 6 and 8, respectively. As discussed in Section 4.2.1, one of the samples sent to CTL had a fines content greater than 15%, thus nullifying the maximum index density test. For more details, refer to Appendix 8.

4.2.5 Shipping and X-ray of Relatively Undisturbed Samples

Relatively undisturbed Shelby tube samples were sent to PGI/UCLA in Los Angeles and FWI's laboratory in Houston, Texas. Six (6) sealed Shelby Tubes were shipped by car to PGI and UCLA, and three (3) were shipped via air to FWI's laboratory in specially fabricated, padded containers designed to minimize disturbance of the samples and that maintained the tubes in a vertical position. The soil samples sent to the laboratory consisted of silty sand, clayey sand, silty, clayey sand, and lean clay with sand. The Shelby tubes received by FWI's laboratory were X-rayed to determine the availability and quality of the material inside the tubes. Interpretation of soils using X-ray radiographs were performed in accordance with ASTM D4452, Methods for X-Ray Radiography of Soil Samples, with the slight modifications that are described in detail in Appendix 5. Images of the X-ray sample radiography are presented in Appendix 5.

4.2.6 Cyclic Triaxial Shear

Cyclic triaxial shear tests were performed by FWI on silty sand, clayey sand, silty, clayey sand, and lean clay with sand samples. The samples were tested to evaluate the ability of soil to resist the shear stresses induced in soil mass due to cyclic loading. The tests were performed in general accordance with ASTM D 5311, Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil.

Nine (9) cyclic triaxial shear tests were performed. Each selected test specimen was water saturated followed by isotropic consolidation in a consolidation cell. Each specimen was then subjected to sinusoidally varying axial load to produce a specific cyclic stress ratio. Pore water pressures generated under undrained conditions during the tests were recorded. The test results are provided in Appendix 5. Index and classification tests such as natural moisture content, unit weight, Atterberg Limits and fines content were also performed on the samples.

4.2.7 Cyclic Simple Shear

Cyclic simple shear tests were performed by PGI/UCLA on clay samples to measure the rate of straining effect on the cyclic shear strength. To increase saturation levels, the soil samples were soaked under a vertical stress corresponding to the in-situ vertical stresses for 24 to 48 hours while still inside the tubes. A suite of shear tests consisting of monotonic loading and cyclic stressstrain applications were then performed over the extruded and trimmed specimens. The test results are provided in Appendix 9. Details of the testing apparatus are described in Duku et al. (2007). In addition, index and classification tests such as natural moisture content, unit weight, Atterberg Limits and fine content were also performed on the samples

Although strain-dependent modulus degradation and damping ratio increase with strain could also be obtained from this type of tests, limitations of the equipment used did not permit to fully saturate the specimen under back pressure. Thus the test results are questionable and should not be taken into consideration for design purposes.

4.2.8 Soil Abrasion

Soil Abrasion Testing (SAT) was performed to determine the abrasiveness of soil to the Tunnel Boring Machine (TBM) disc cutter steel. This test is not standardized by ASTM, but is currently under development. The test procedure consists of measuring the cutter steel wear. The test is based on the NTNU Abrasion test (AV/AVS) for measuring steel wear due to hard rock. It was performed in general accordance with "New test methodology for estimating the abrasiveness of soils for TBM tunneling" (Nilsen B. et al. 2007). The testing was performed between August 12 and September 9, 2008.

Four bulk soil samples were sent for testing at SINTEF Rock and Soil Mechanics laboratory in Trondheim, Norway. The soil samples consisted of four soil types: Lean Clay (USCS: CL), Clayey Sand (SC), Poorly Graded Sand (SP), and Poorlygraded Gravel with Silt and Sand (GP-GM). The soil samples were selected from 35% PE phase and 65% ED phase geotechnical investigations. Although clays are known to be non-abrasive, the clay sample was included as a baseline comparison. The tests were performed on the portions of samples passing through 1 mm sieve size. Prior to the tests, Atterberg Limits were determined for clay sample, and gradation analysis performed on sand and gravel samples.

In addition to the four soil samples sent to SINTEF, a portion of gravel sample was sent to the geotechnical laboratory at University of Texas at Austin (UT). The purpose of sending a specimen for similar testing at UT was to compare the effect of grinding the bigger size soil particles on test results, and also to verify if SAT could be carried out at an alternative laboratory within United States for any future testing for the project. The testing at UT included testing on virgin as well as modified soil specimens passing through 1mm and 4mm size sieves. The

modified soil specimens consisted of gravel-size particles grinded to less than 1 and 4mm size. UT performed testing on specimens passing through 1mm size sieve after they observed problems during testing on specimens passing through 4mm size sieve. The details and results of abrasion tests are provided in Appendix 11.

4.2.9 Mineralogy

The mineralogy testing program consisted of X-ray powder diffraction analysis (XRD), wavelength dispersive X-ray flourescense analysis (XRF), clay ID; and petrography. The testing program also included sieve and hydrometer analyses, and durability testing on selected cohesionless samples. The XRD, XRF, and Clay ID measurements were performed according to generally accepted industry standards^{*}. The Clay ID measurements were performed only on cohesive samples. Petrography analyses were performed in accordance with ASTM C295; durability testing: ASTM D 3744; and sieve and hydrometer analyses: ASTM D422. The testing program was conducted from April through June 2008, and results provided to us in July.

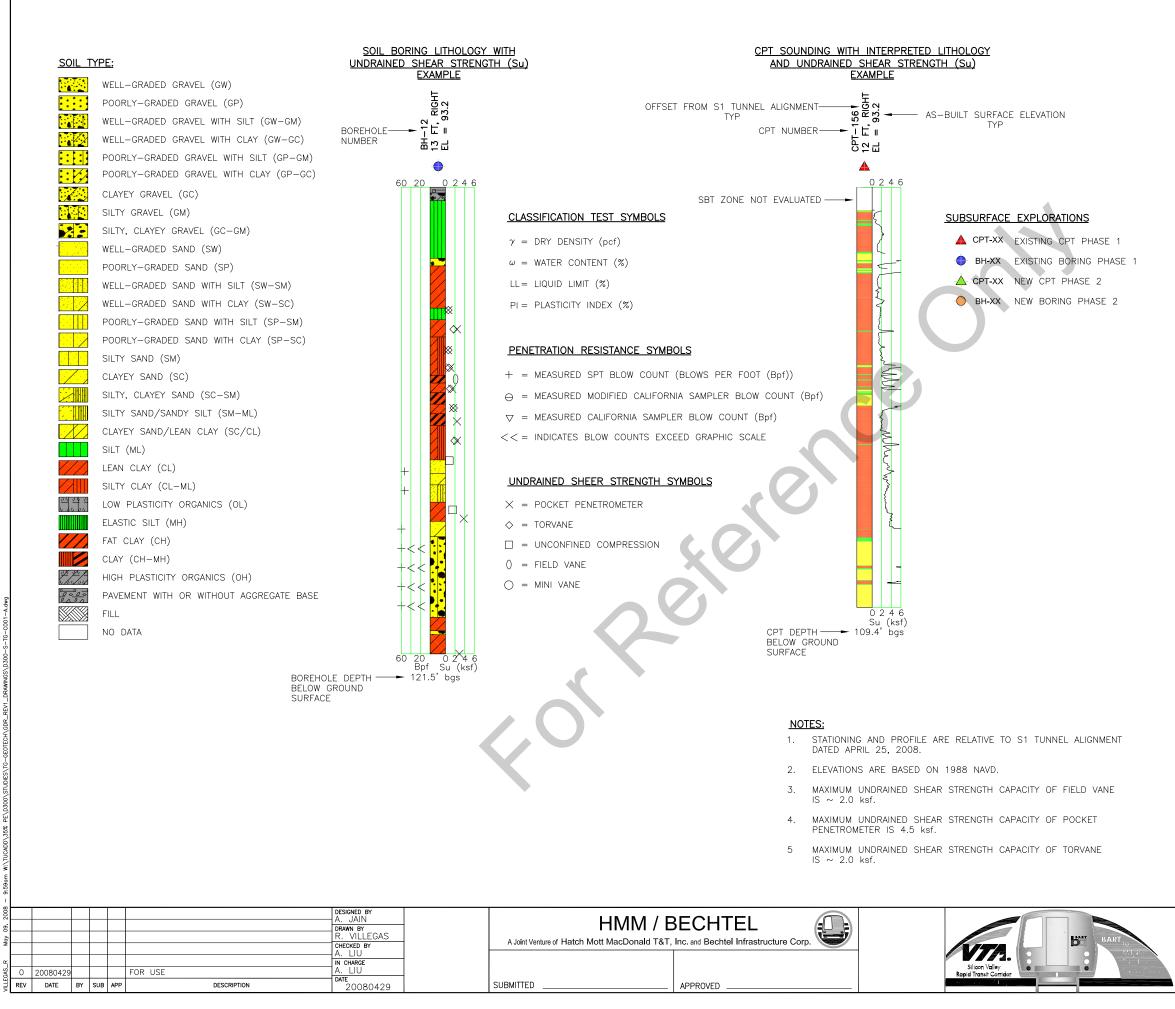
A total of 11 samples were selected from 35% PE and 65% ED investigation phases, and sent to CAMET Research (CAMET) located in Goleta, California. CAMET performed XRD and Clay ID testing on a portion of the provided samples, and sent the remaining portions to the following California laboratories for different testing: Chemistry of Concrete laboratory in Goleta carried out XRF measurements, Analytical Consulting Group, Inc. in Ventura carried out petrography analyses, Twining Laboratories of Southern California in Long Beach performed durability testing, and Pacific Materials Laboratory in Goleta conducted sieve and hydrometer analyses. These laboratories performed the testing under the overview of CAMET.

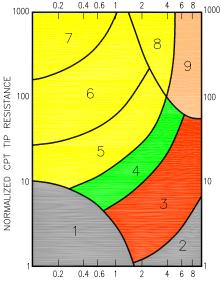
The samples included both cohesive and cohesionless soils. The XRD, XRF, Clay ID and petrography tests consisted of determining mineralogical composition of soil samples using spectrometers. The durability tests were performed to determine the resistance of soil samples to generating fines on mechanical agitation in the presence of water. Though the durability testing is not conventional for tunneling purposes; CAMET performed the tests due to insufficiency of samples for Los Angeles Abrasion testing. Sieve and hydrometer analyses were performed to determine the USCS classification of cohesionless soil samples. The test results are provided in Appendix 12.

^{*}The references for testing are mentioned in CAMET's report in Appendix 12.

5.0 Summary and Future Data Reports

The content of this report summarizes the data from 19 boreholes, 25 CPTs, and associated laboratory tests conducted during the Phase Two 65% Engineering Design Investigation. Sticky Limit, mineralogy and soil abrasion tests were performed on samples from the 35% PE Investigation and the 65% Engineering Design Investigation. The Plan and Profile Drawings presented in Figures 5-1 through 5-43 of this report are updated from those presented in the 35% Preliminary Engineering Geotechnical Data Report (HMM/Bechtel, 2005a) to include the information from the additional borings and CPTs.


The Plan and Profile Drawings include information from the six sonic borings completed during the pumping test program. The Pumping Test Data Report (HMM/Bechtel, 2008) presents the boring logs and summarizes the sonic drilling, sampling and laboratory samples obtained from the sonic borings.


A Phase Three (P3) Geotechnical Investigation Data Report will be prepared to include information from the boreholes advanced during the final stages of design.

12/16/2008

Figure 5-1 Geotechnical Plan and Profile Legend

orecerence

NORMALIZED FRICTION RATIO (%)

ZONE	SOIL BEHAVIOR TYPE (SBT)
1	SENSITIVE FINE-GRAINED
2	ORGANIC MATERIAL
3	CLAY TO SILTY CLAY
4	CLAYEY SILT TO SILTY CLAY
5	SILTY SAND TO SANDY SILT
6	CLEAN SANDS TO SILTY SANDS
7	GRAVELLY SAND TO SAND
8	VERY STIFF SAND TO CLAYEY SAND*
9	VERY STIFF FINE-GRAINED*

*OVERCONSOLIDATED OR CEMENTED

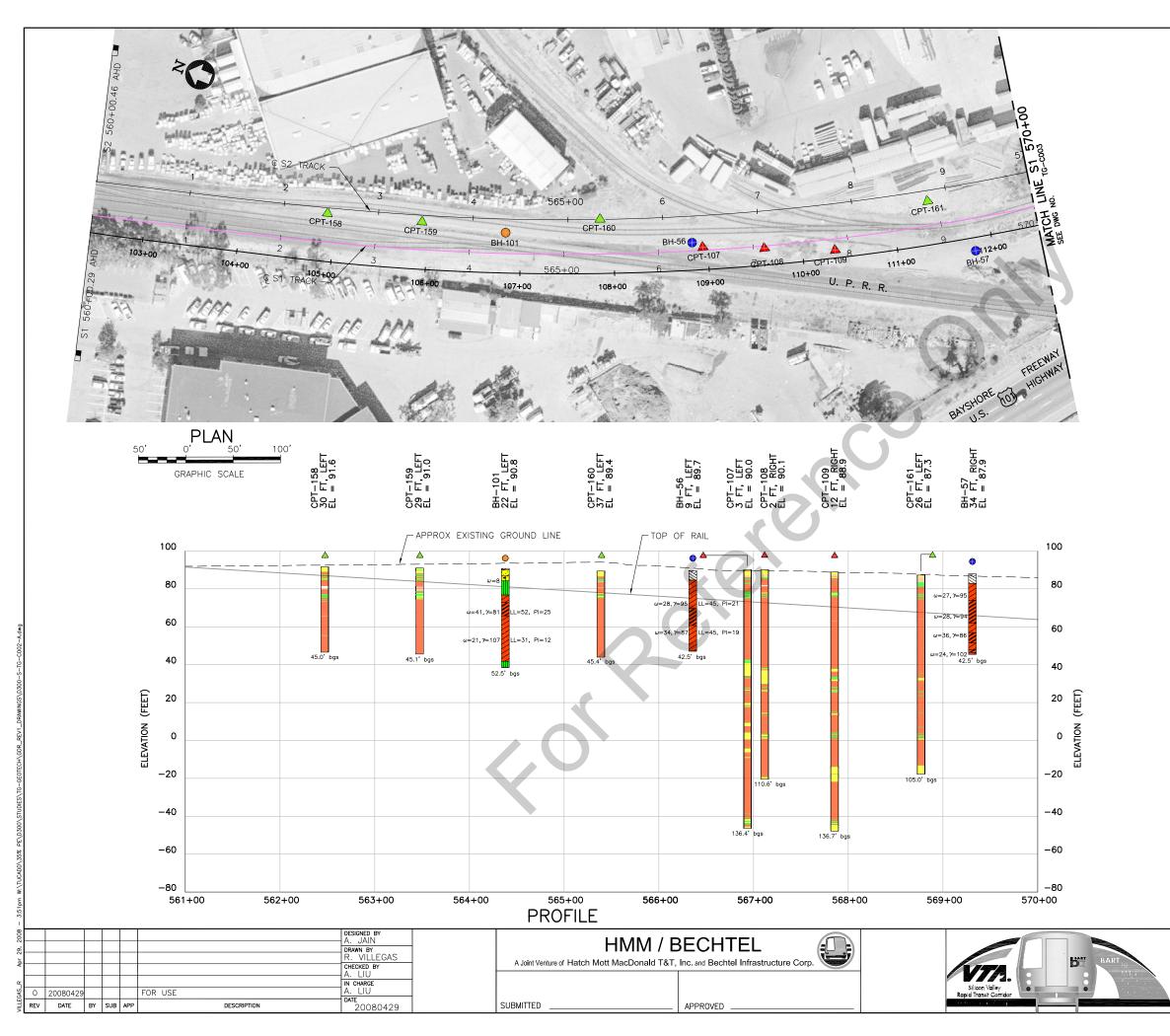
CPT CORRELATION CHART (MODIFIED FROM ROBERTSON, 1990)

<u>LEGEND</u>

- ----- EXISTING GROUND SURFACE
- ------ TUNNEL EXTENTS
- ------ EXCAVATION BOUNDERIES

6. CPT UNDRAINED SHEAR STRENGTH VALUES TRUNCATED AT 6.0 ksf.

- 7. CPT UNDRAINED SHEAR STRENGTH NOT APPLICABLE FOR SBT ZONES 5, 6, 7, AND 8, HENCE NOT SHOWN.
- BORING LOGS FOR BH-83, BH-86, BH-92, BH-94, BH-96 AND BH-104 ARE INCLUDED IN PUMPING TEST DATA REPORT (HMM/BECHTEL, FEBRUARY 2008).
- FOR BORINGS BH-24, BH-52, BH-58, BH-70 AND BH-74, CLASSIFICATION TEST RESULTS ARE NOT SHOWN AT CORRECT DEPTHS. REFER TO BORING LOGS IN APPENDIX 1 OF THIS PHASE TWO - 65% ENGINEERING DESIGN INVESTIGATION GEOTECHNICAL DATA REPORT.

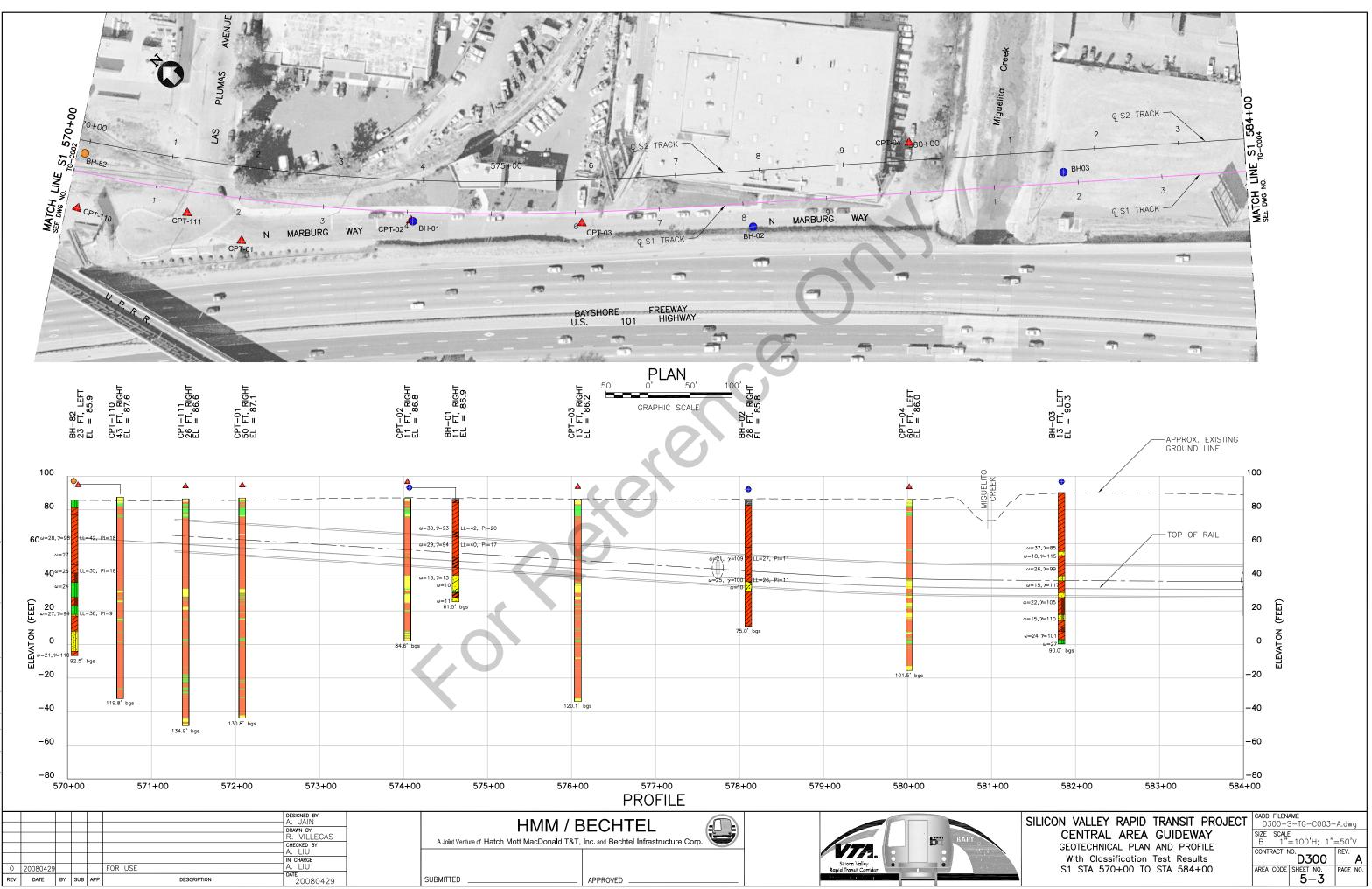

SILICON VALLEY RAPID TRANSIT PROJECT CENTRAL AREA GUIDEWAY GEOTECHNICAL PLAN AND PROFILE LEGEND

CADD FILENAME D300-S-TG-C001-A.dwg					
SIZE	SCALE				
В			NTS		
CONT	REV.				
			00		А
AREA	CODE	SHEET	NO.	PAGE	NO.
		5-	-1		

Forkerence

Figure 5-2 Geotechnical Plan and Profile with Classification Test Results: STA 561+00 to STA 570+00

orecence

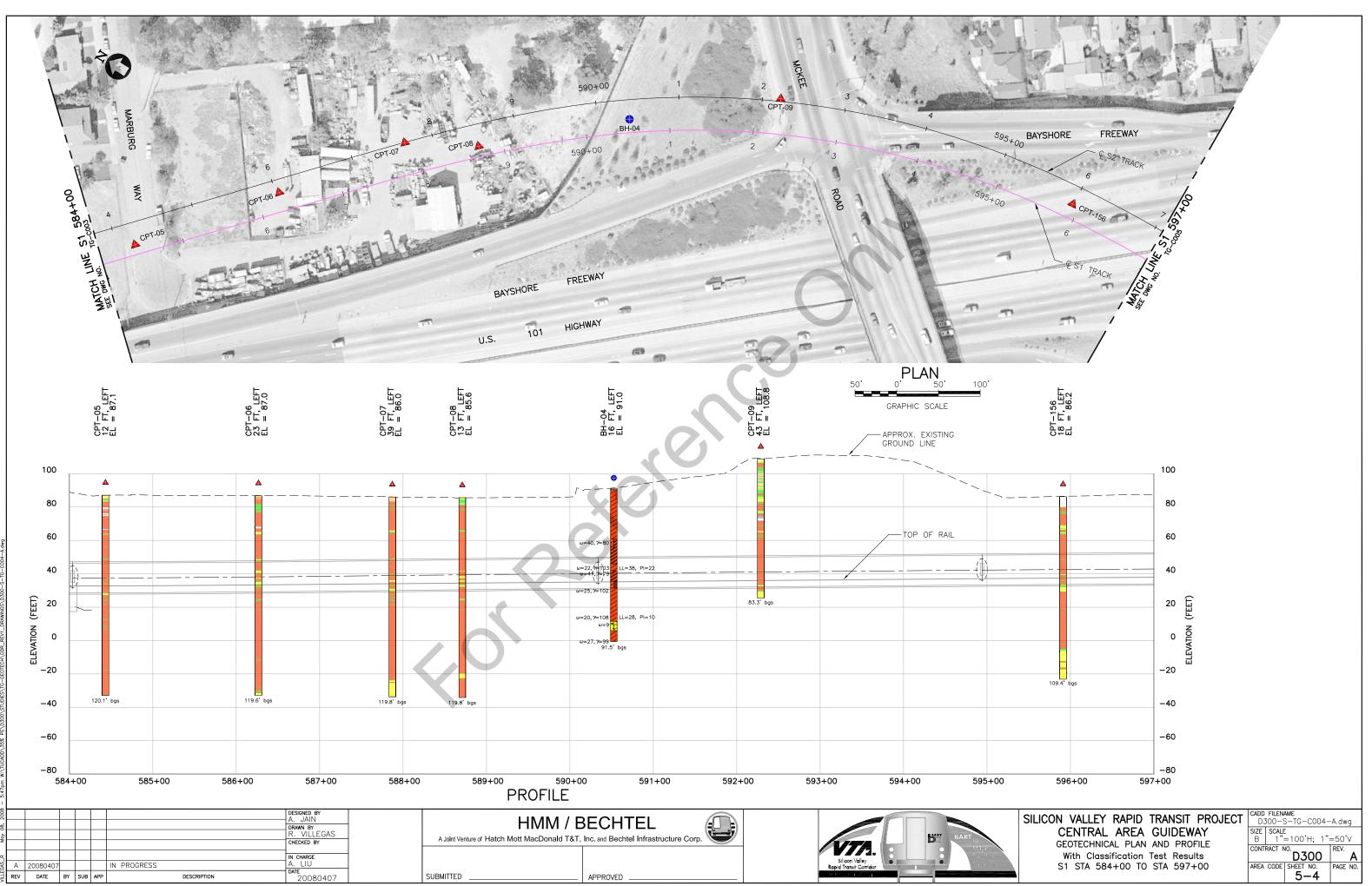


	SILICON VALLEY RAPID TRANSIT PROJECT	CADD D3		аме S-TG-C002-	A.dwg
	CENTRAL AREA GUIDEWAY		SCALE	= =100'H; 1"=	=50'V
	With Classification Test Results	CONT	RACT	^{10.} D300	REV.
١	S1 STA 561+00 TO STA 570+00	AREA	CODE	SHEET NO. 5-2	PAGE NO.

Forkerence

Figure 5-3 Geotechnical Plan and Profile with Classification Test Results: STA 570+00 to STA 584+00

orecence

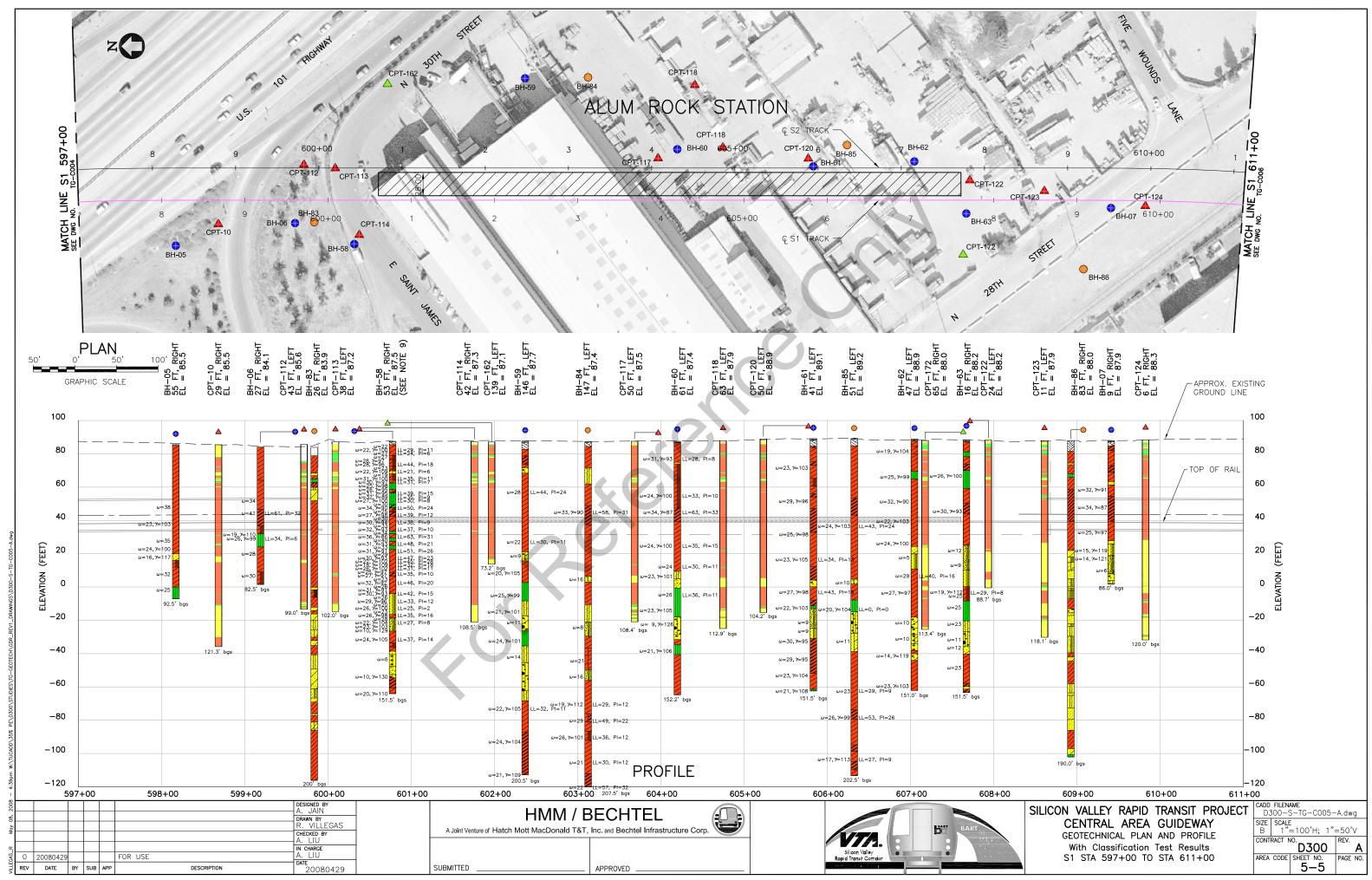


See disclaimer on cover page.

Forkerence

Figure 5-4 Geotechnical Plan and Profile with Classification Test Results: STA 584+00 to STA 597+00

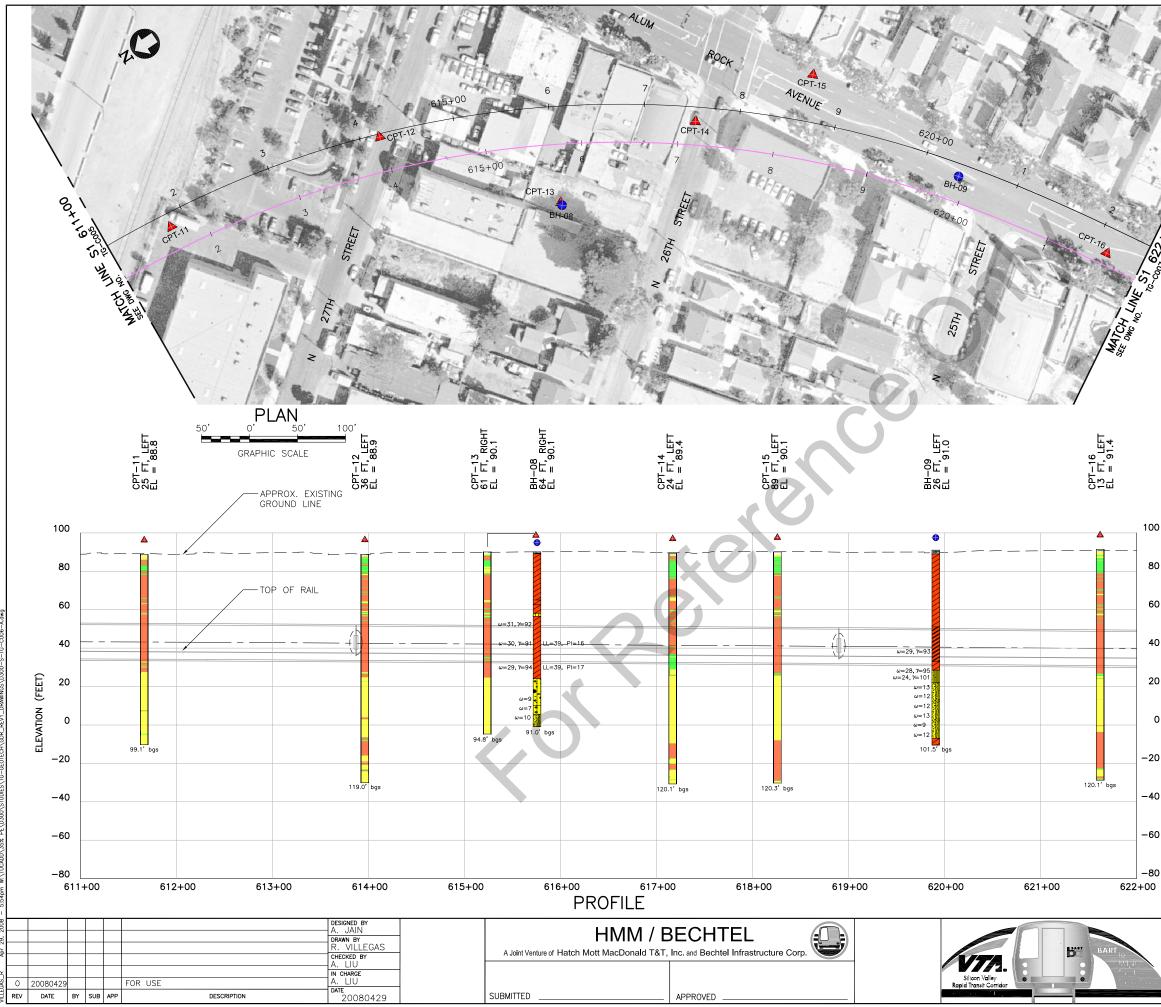
orecence



See disclaimer on cover page.

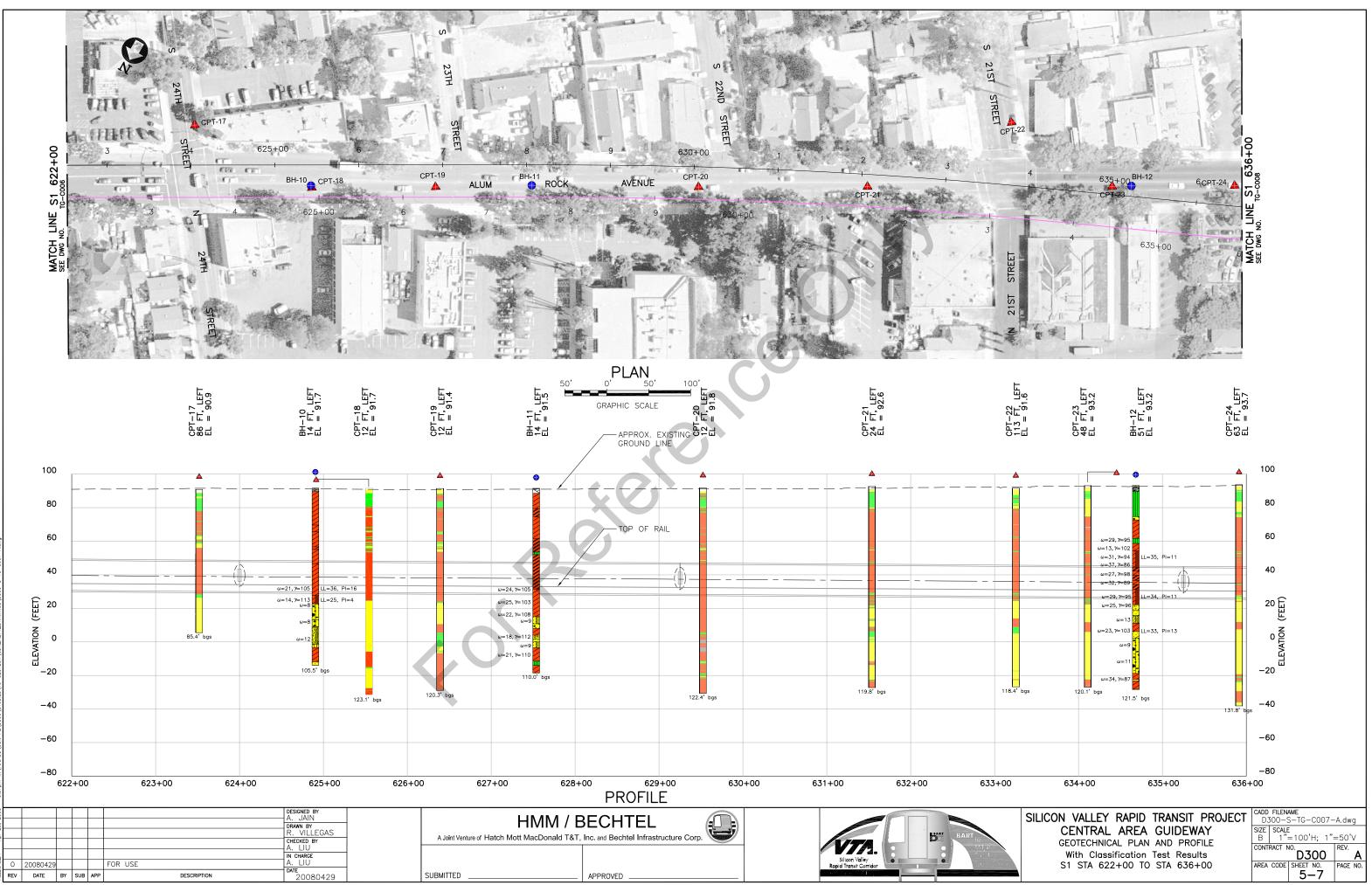
Forkerence

Figure 5-5 Geotechnical Plan and Profile with Classification Test Results: STA 597+00 to STA 611+00


orecence

See disclaimer on cover page.

Forkerence


Figure 5-6 Geotechnical Plan and Profile with Classification Test Results: STA 611+00 to STA 622+00

1222			
0			
0			
0			
0			
0	ដ៍		
0	ELEVATION (FEET)		
0	ELEVAT		
0			
0			
0			
)			
	SILICON VALLEY RAPID TRANSIT PROJECT CENTRAL AREA GUIDEWAY GEOTECHNICAL PLAN AND PROFILE With Classification Test Results S1 STA 611+00 TO STA 622+00	$\begin{array}{c} \hline \text{CADD FILENAME} \\ D300-S-TG-C006-A.dwg \\ \hline \text{SIZE} & \text{SCALE} \\ B & 1"=100'H; & 1"=50'V \\ \hline \text{CONTRACT NO.} \\ \hline \textbf{D300} & \text{ReV.} \\ \hline \textbf{AREA CODE} & \text{SHEET NO.} \\ \hline \textbf{5-6} & \text{PAGE NO.} \end{array}$	

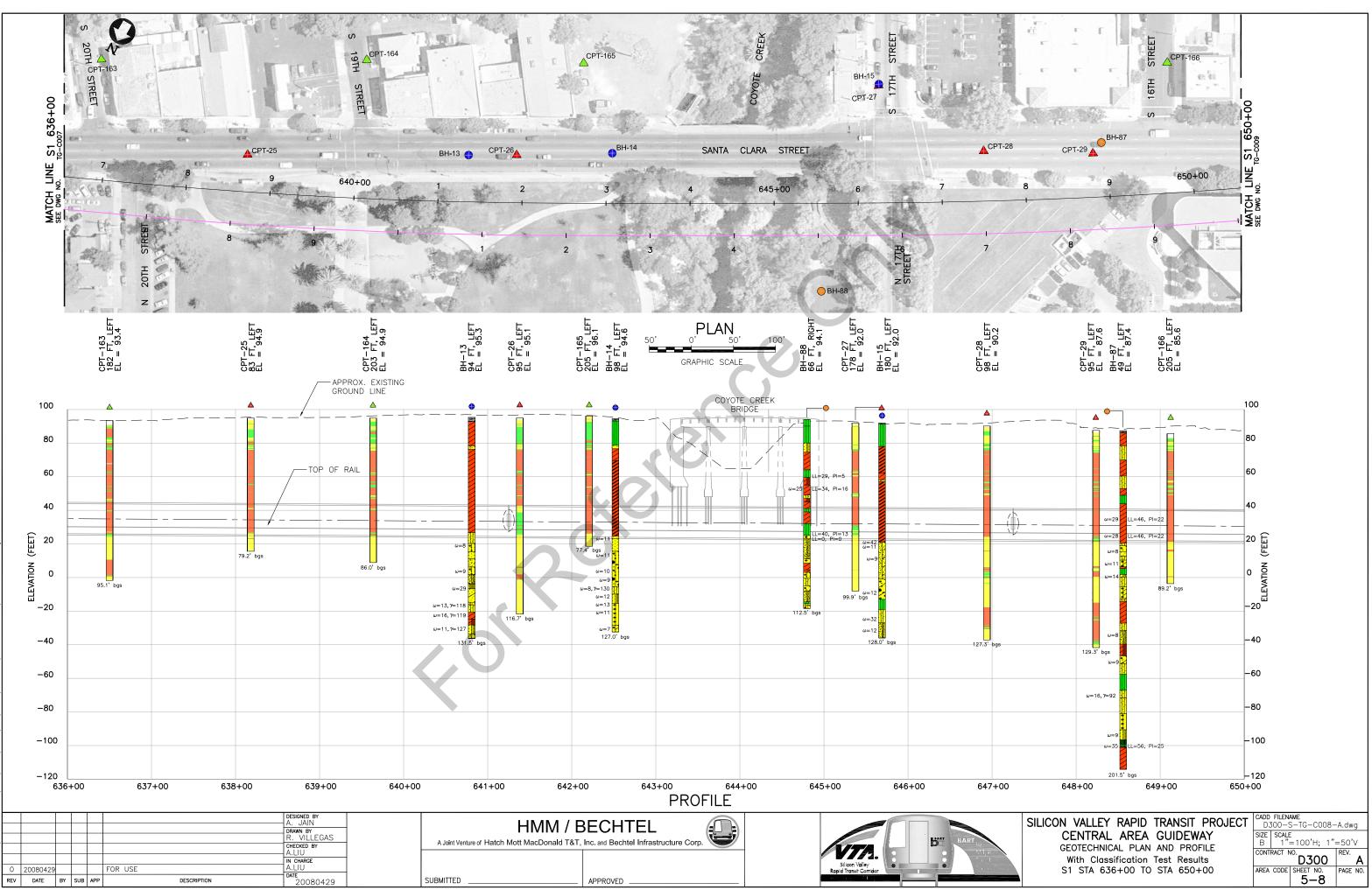
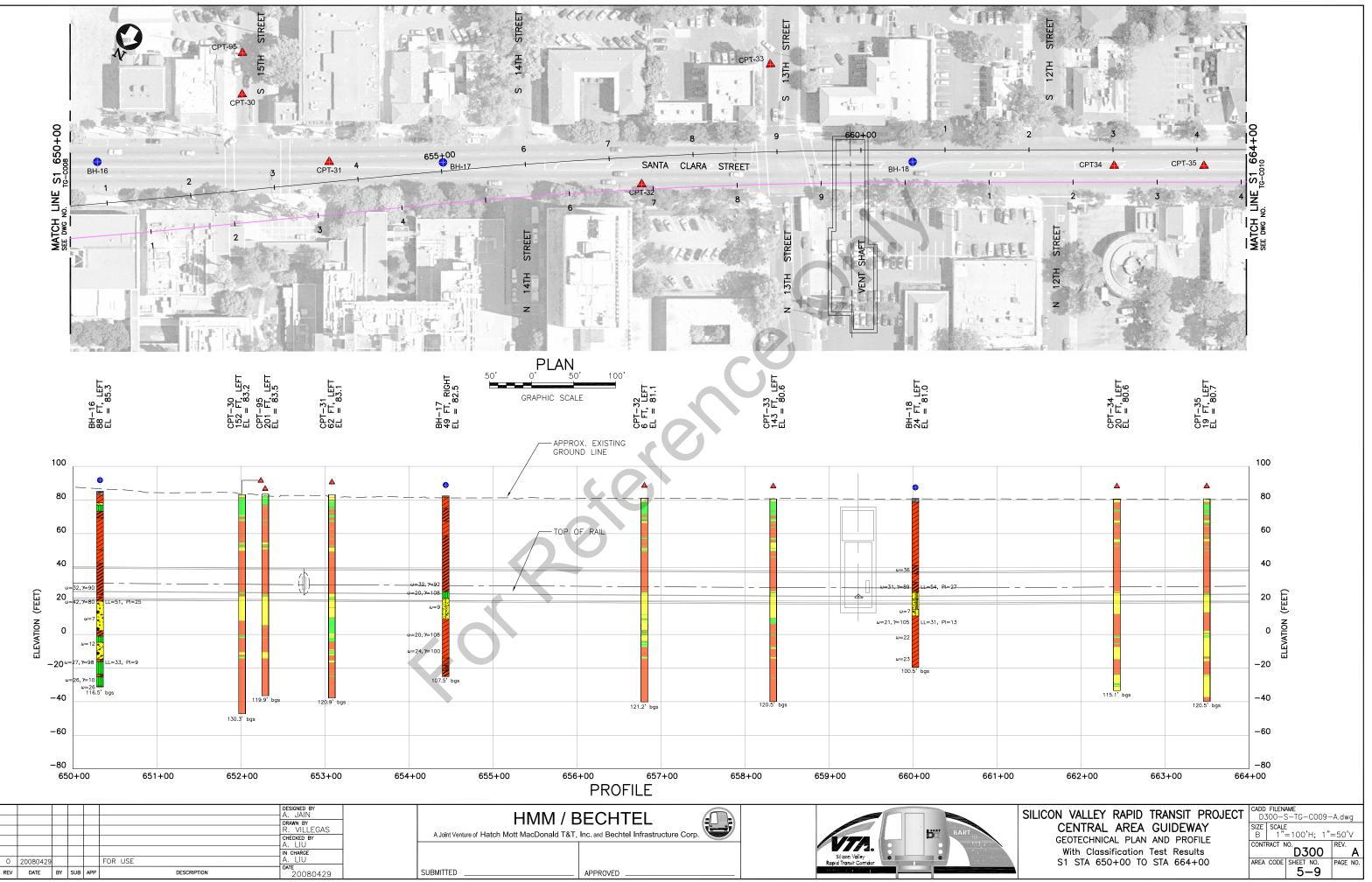

Forkerence

Figure 5-7 Geotechnical Plan and Profile with Classification Test Results: STA 622+00 to STA 636+00

See disclaimer on cover page.


Figure 5-8 Geotechnical Plan and Profile with Classification Test Results: STA 636+00 to STA 650+00

See disclaimer on cover page.

Figure 5-9 Geotechnical Plan and Profile with Classification Test Results: STA 650+00 to STA 664+00

orecence

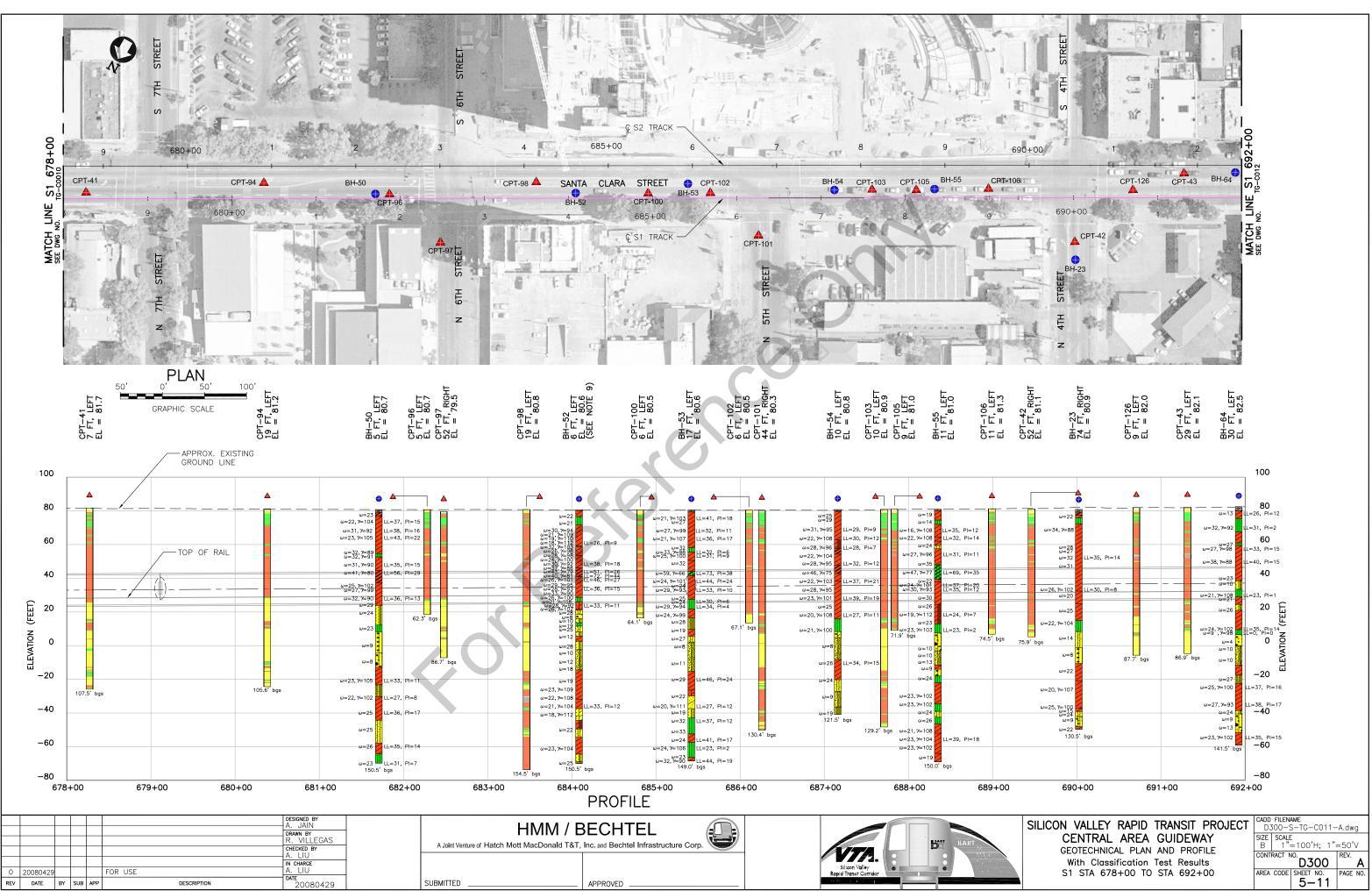

See disclaimer on cover page.

Figure 5-10 Geotechnical Plan and Profile with Classification Test Results: STA 664+00 to STA 678+00

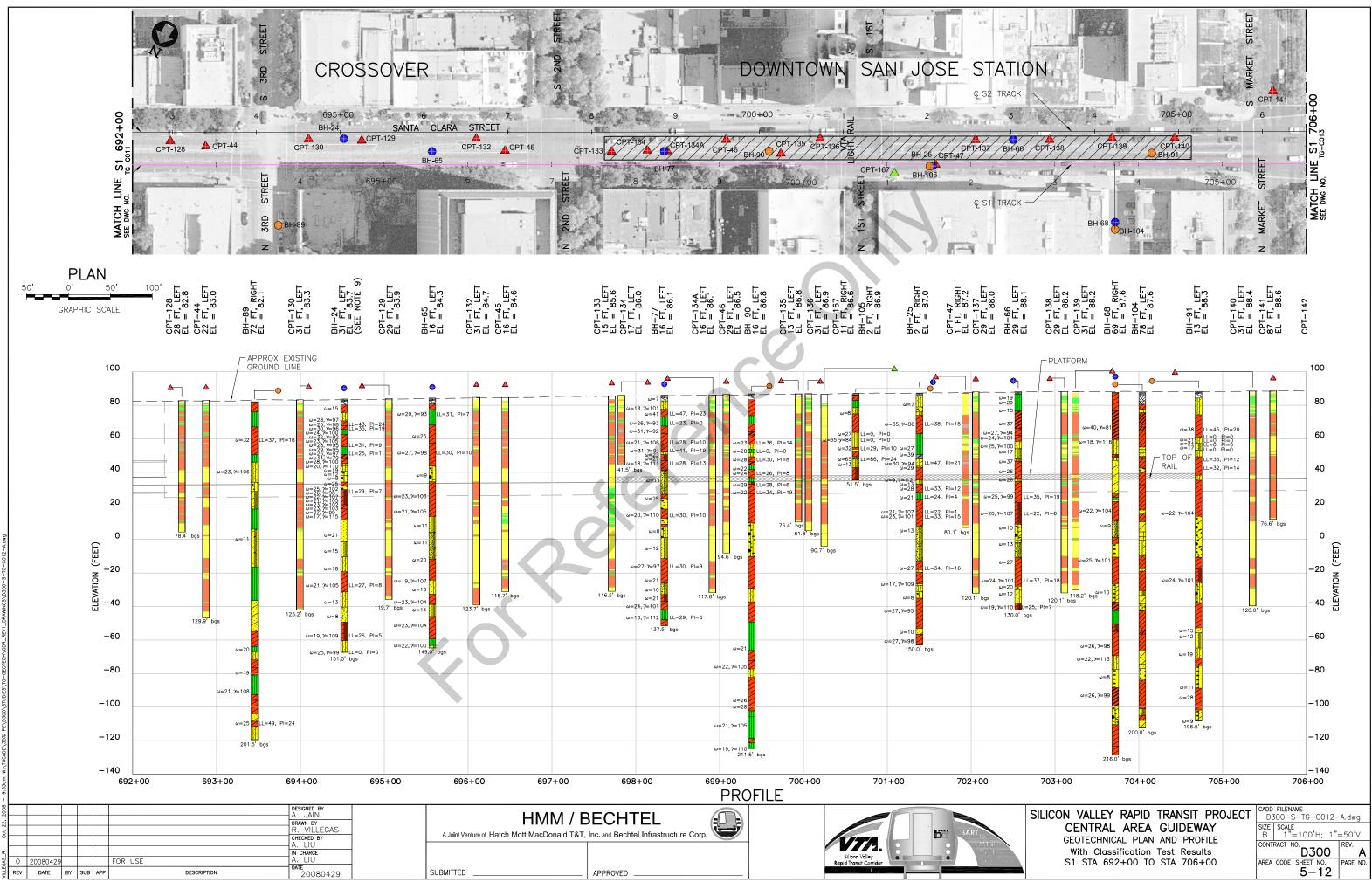

See disclaimer on cover page.

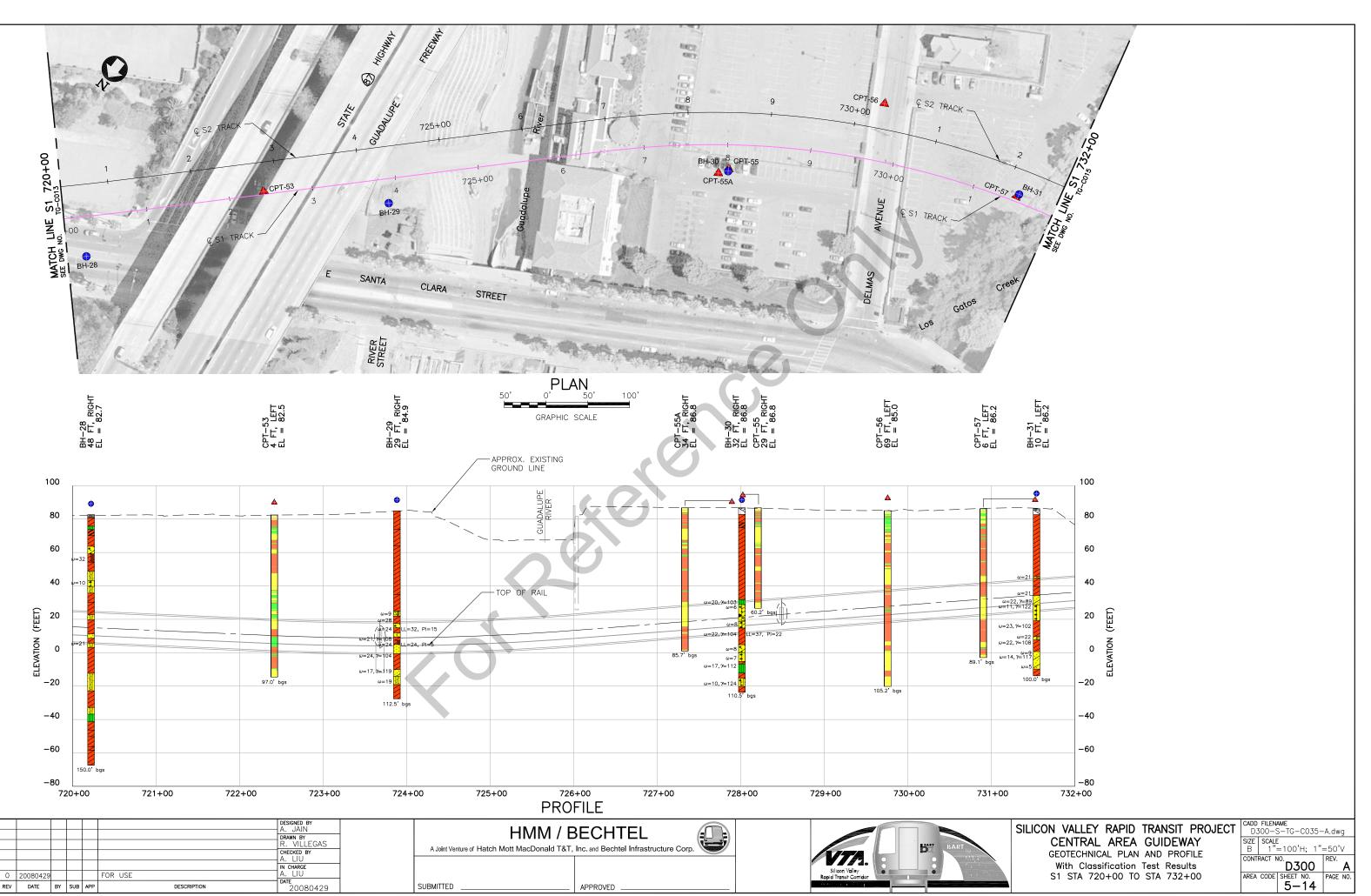
Figure 5-11 Geotechnical Plan and Profile with Classification Test Results: STA 678+00 to STA 692+00

See disclaimer on cover page.

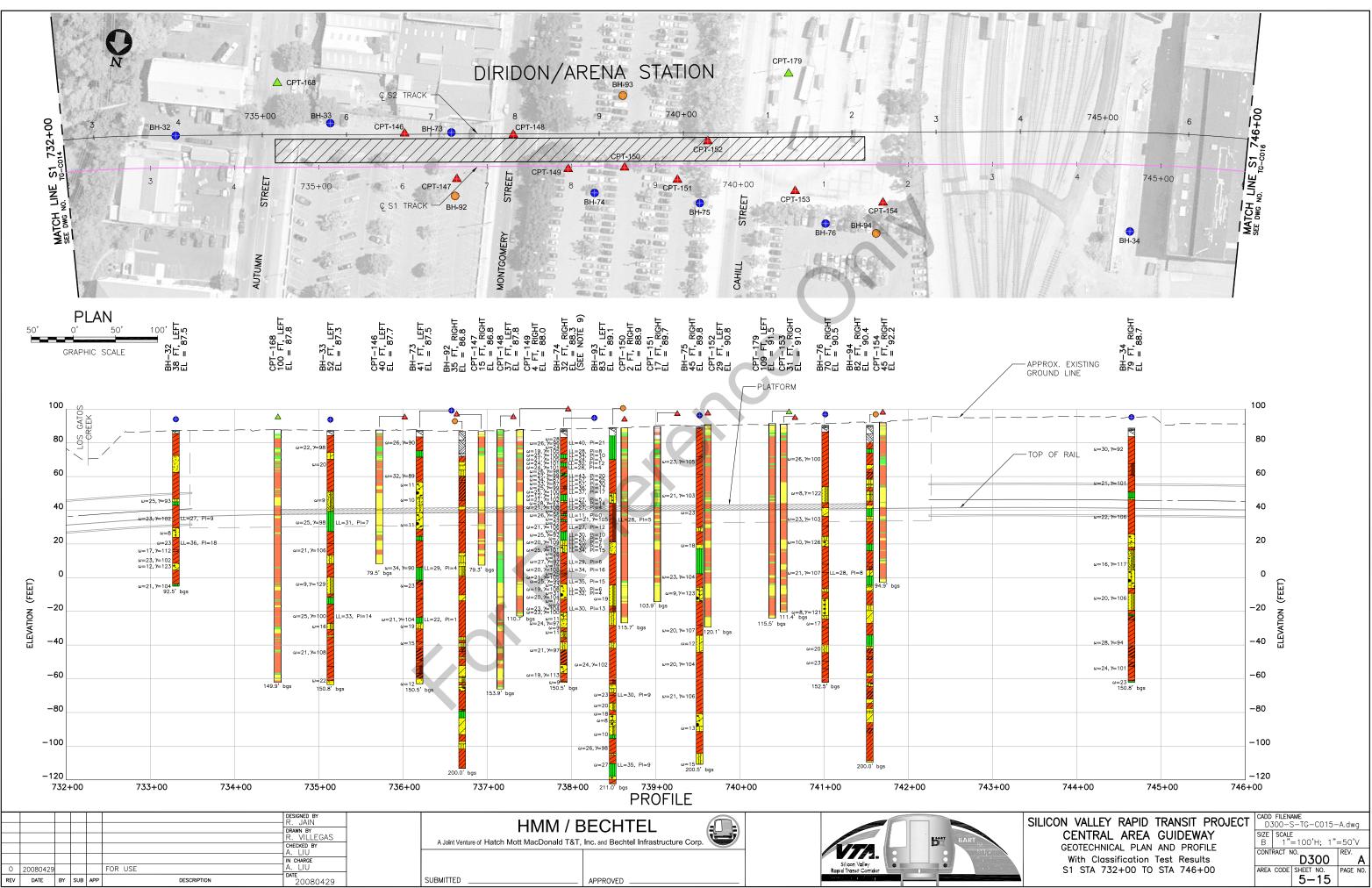
Figure 5-12 Geotechnical Plan and Profile with Classification Test Results: STA 692+00 to STA 706+00

See disclaimer on cover page.

Figure 5-13 Geotechnical Plan and Profile with Classification Test Results: STA 706+00 to STA 720+00


Forkerence

See disclaimer on cover page.

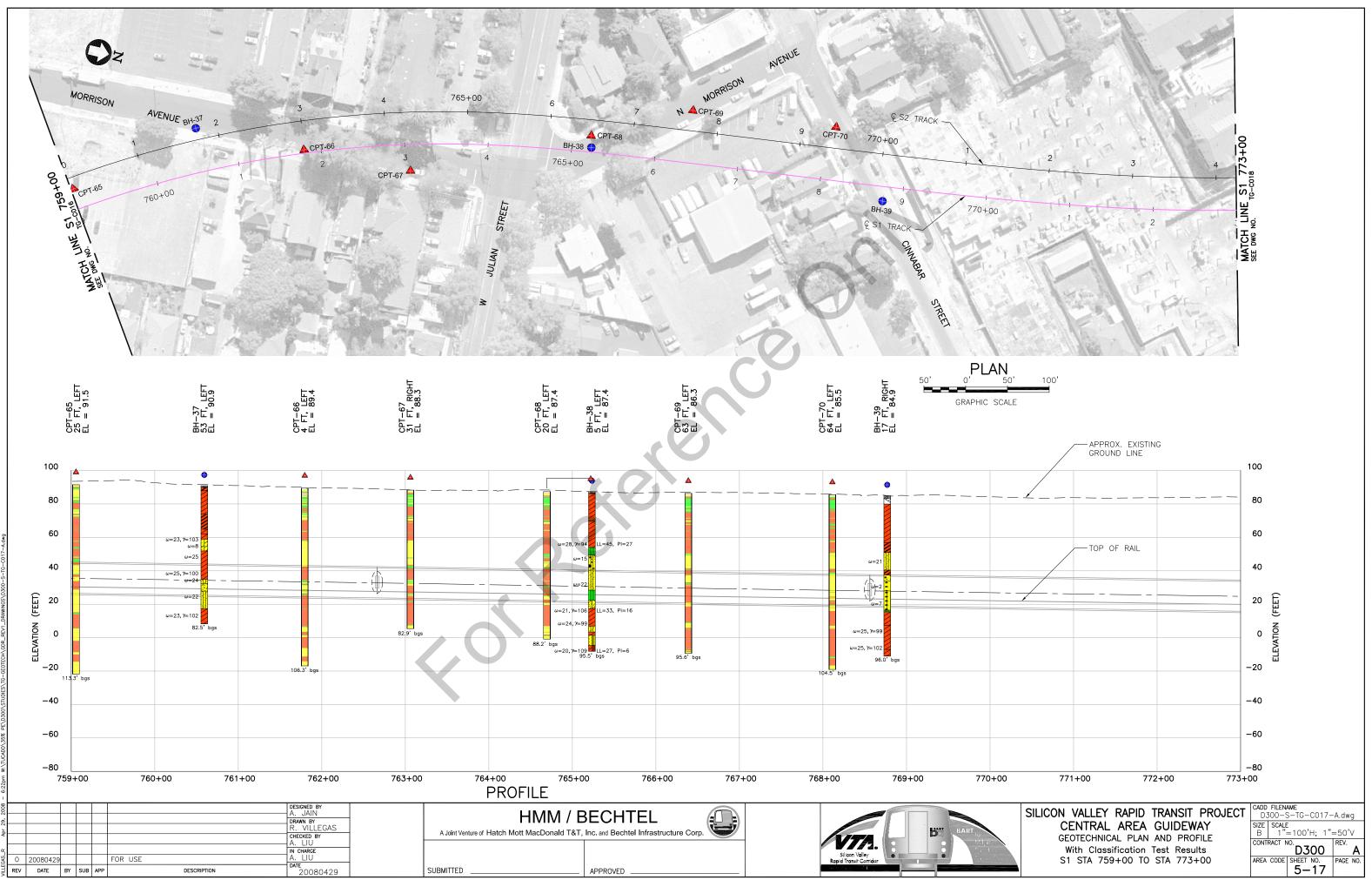

Figure 5-14 Geotechnical Plan and Profile with Classification Test Results: STA 720+00 to STA 732+00

Forkerence

Figure 5-15 Geotechnical Plan and Profile with Classification Test Results: STA 732+00 to STA 746+00


Forkerence

See disclaimer on cover page.


Figure 5-16 Geotechnical Plan and Profile with Classification Test Results: STA 746+00 to STA 759+00

Forkerence

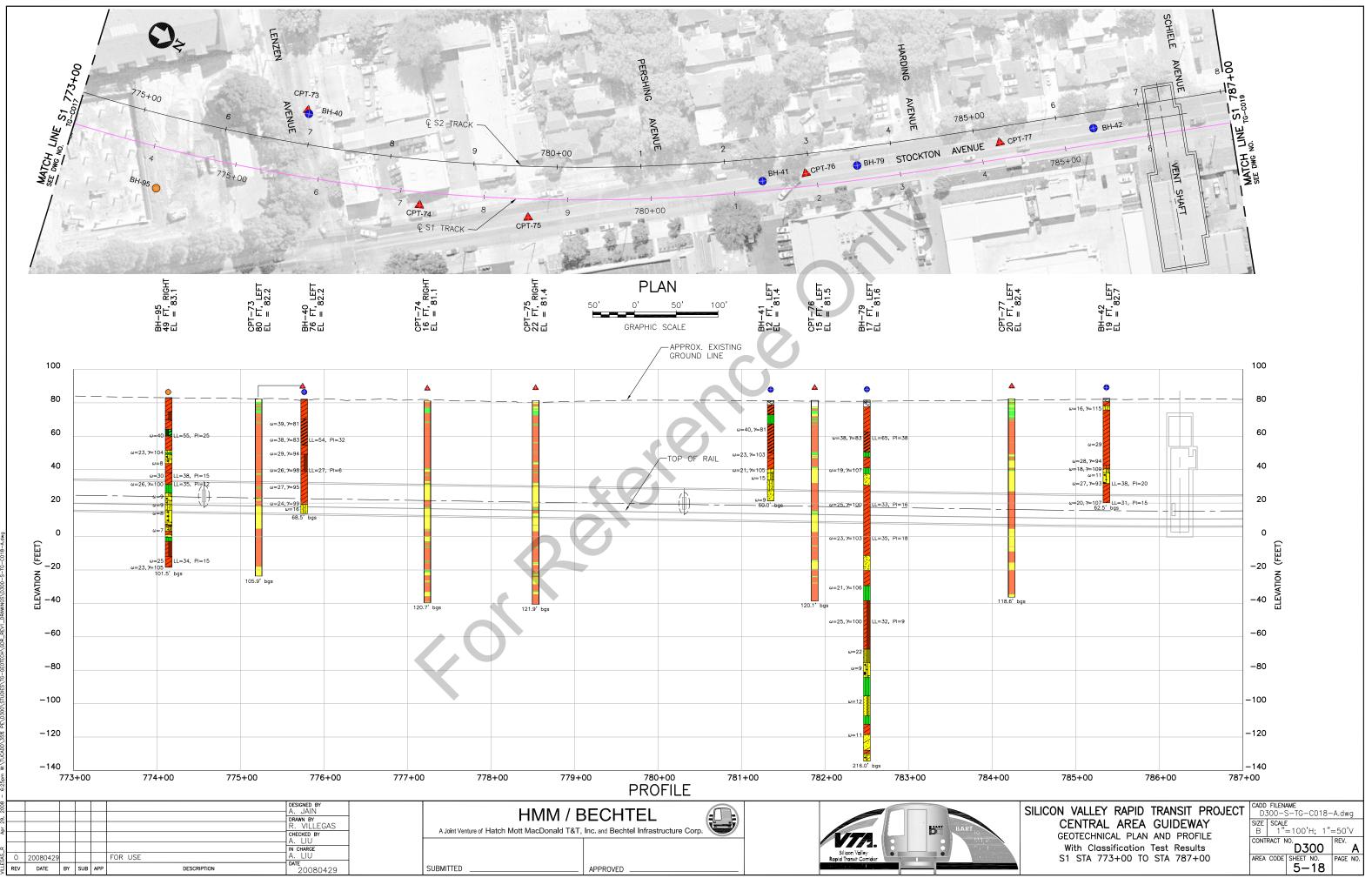

See disclaimer on cover page.

Figure 5-17 Geotechnical Plan and Profile with Classification Test Results: STA 759+00 to STA 773+00

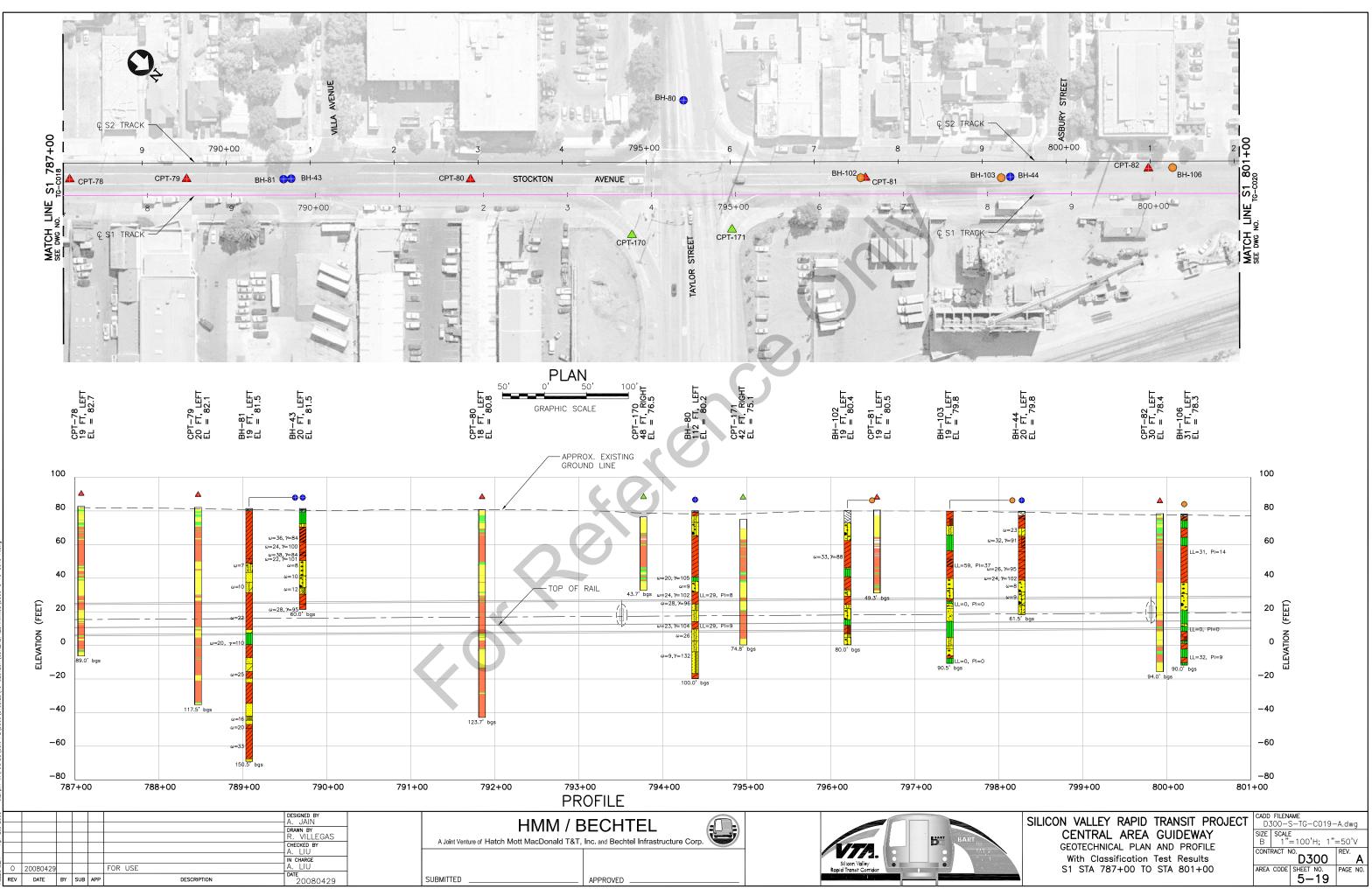
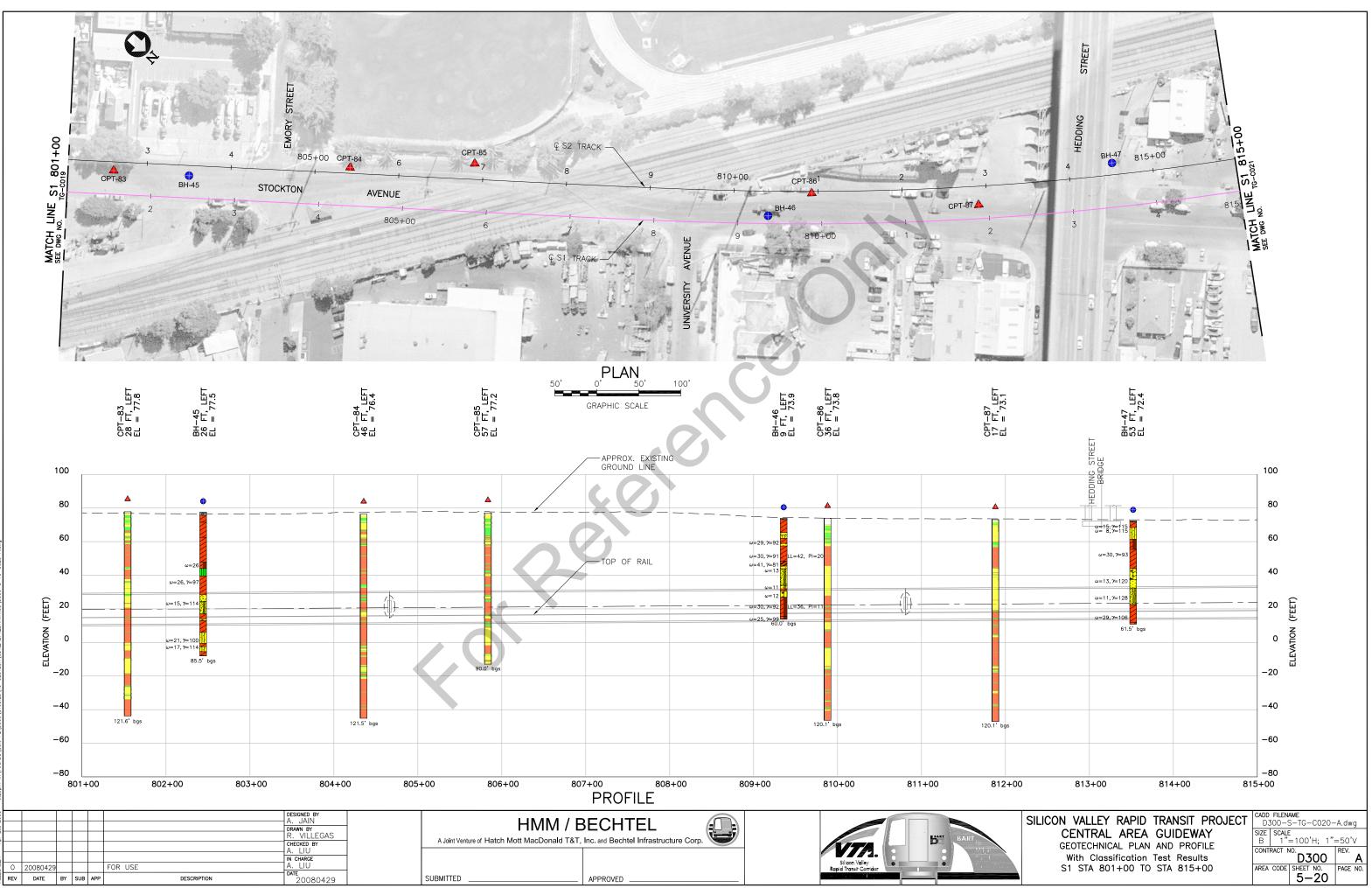

See disclaimer on cover page.

Figure 5-18 Geotechnical Plan and Profile with Classification Test Results: STA 773+00 to STA 787+00


Figure 5-19 Geotechnical Plan and Profile with Classification Test Results: STA 787+00 to STA 801+00

Forkerence

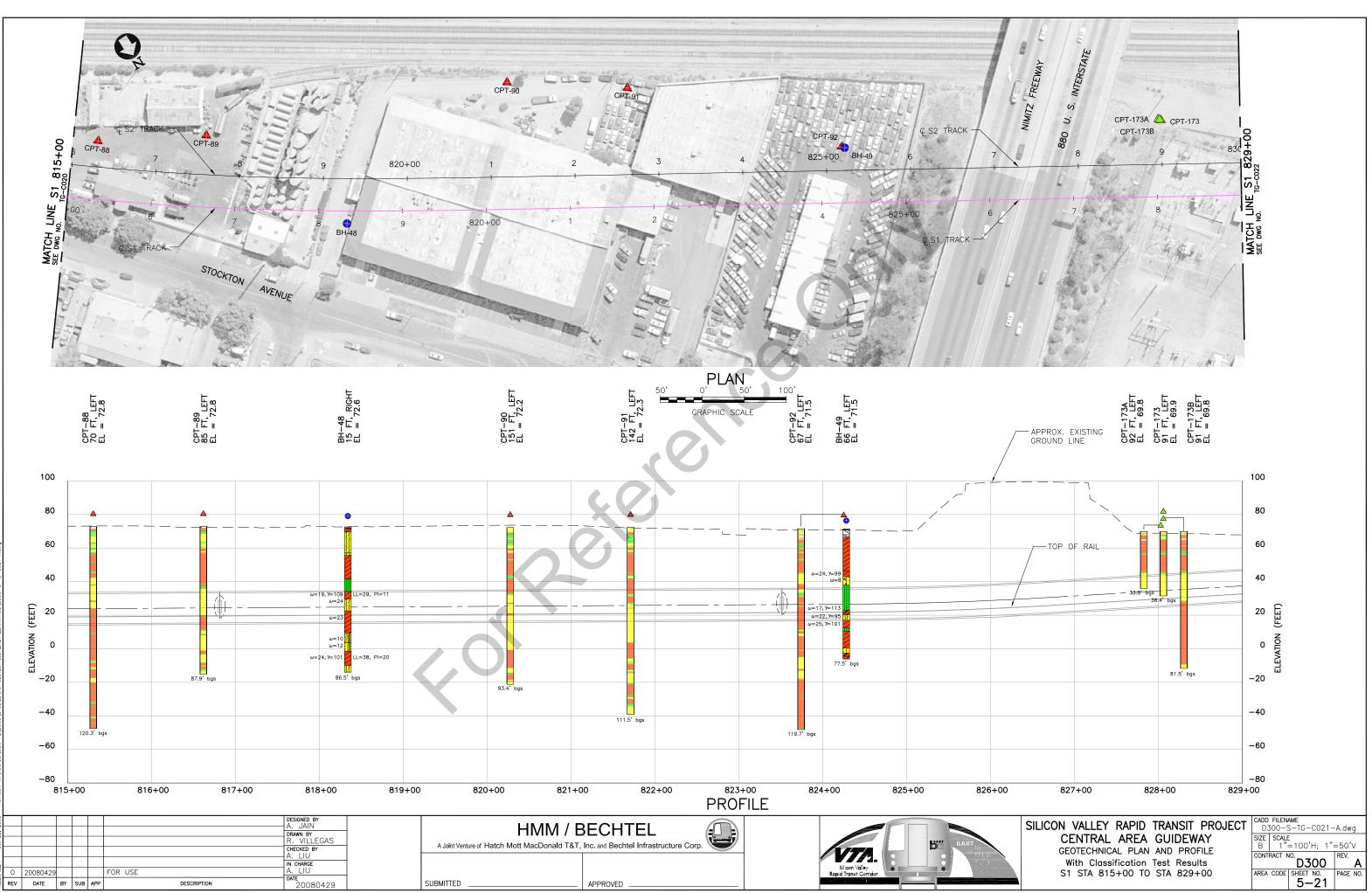

See disclaimer on cover page.

Figure 5-20 Geotechnical Plan and Profile with Classification Test Results: STA 801+00 to STA 815+00

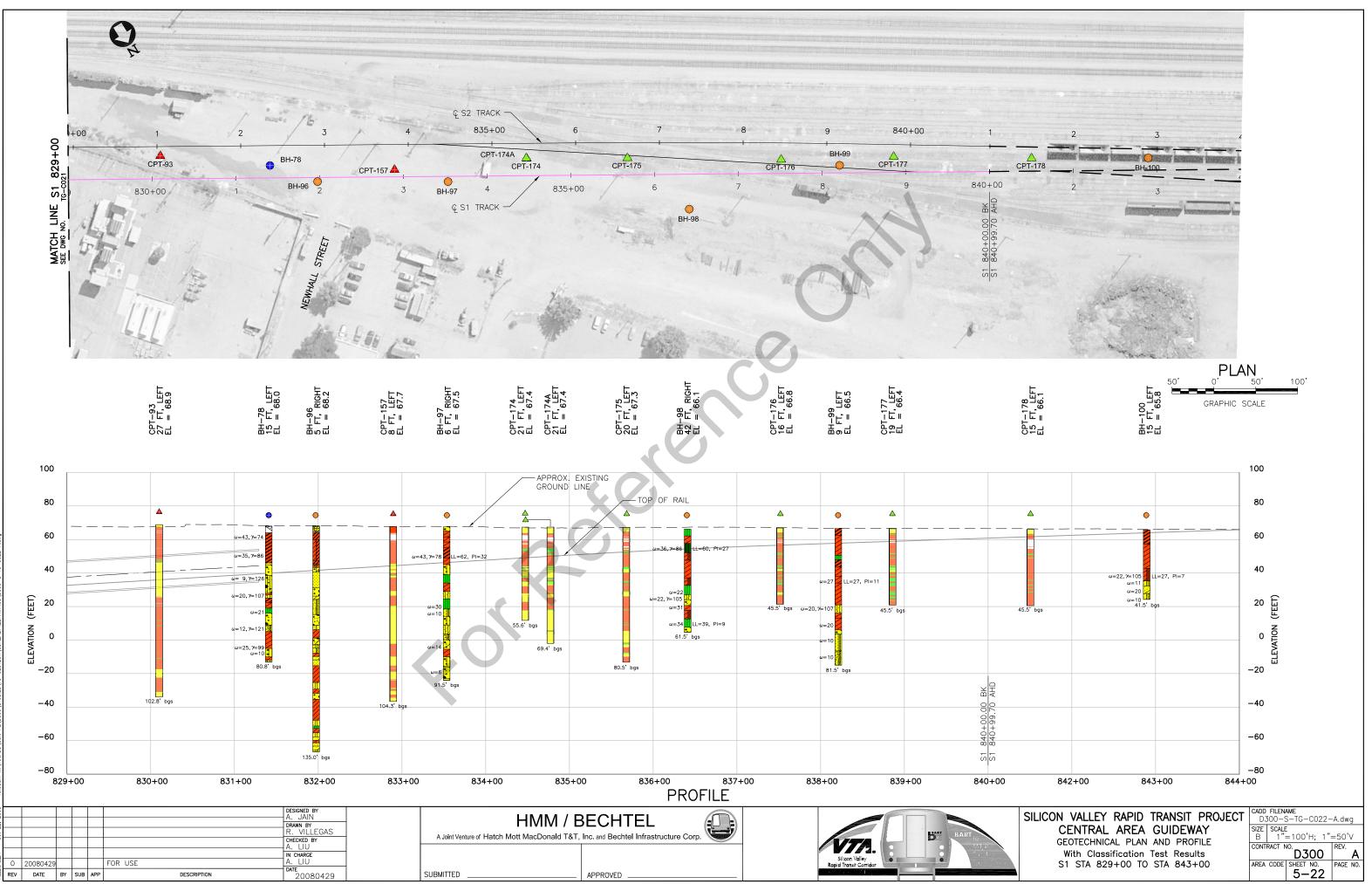

See disclaimer on cover page.

Figure 5-21 Geotechnical Plan and Profile with Classification Test Results: STA 815+00 to STA 829+00

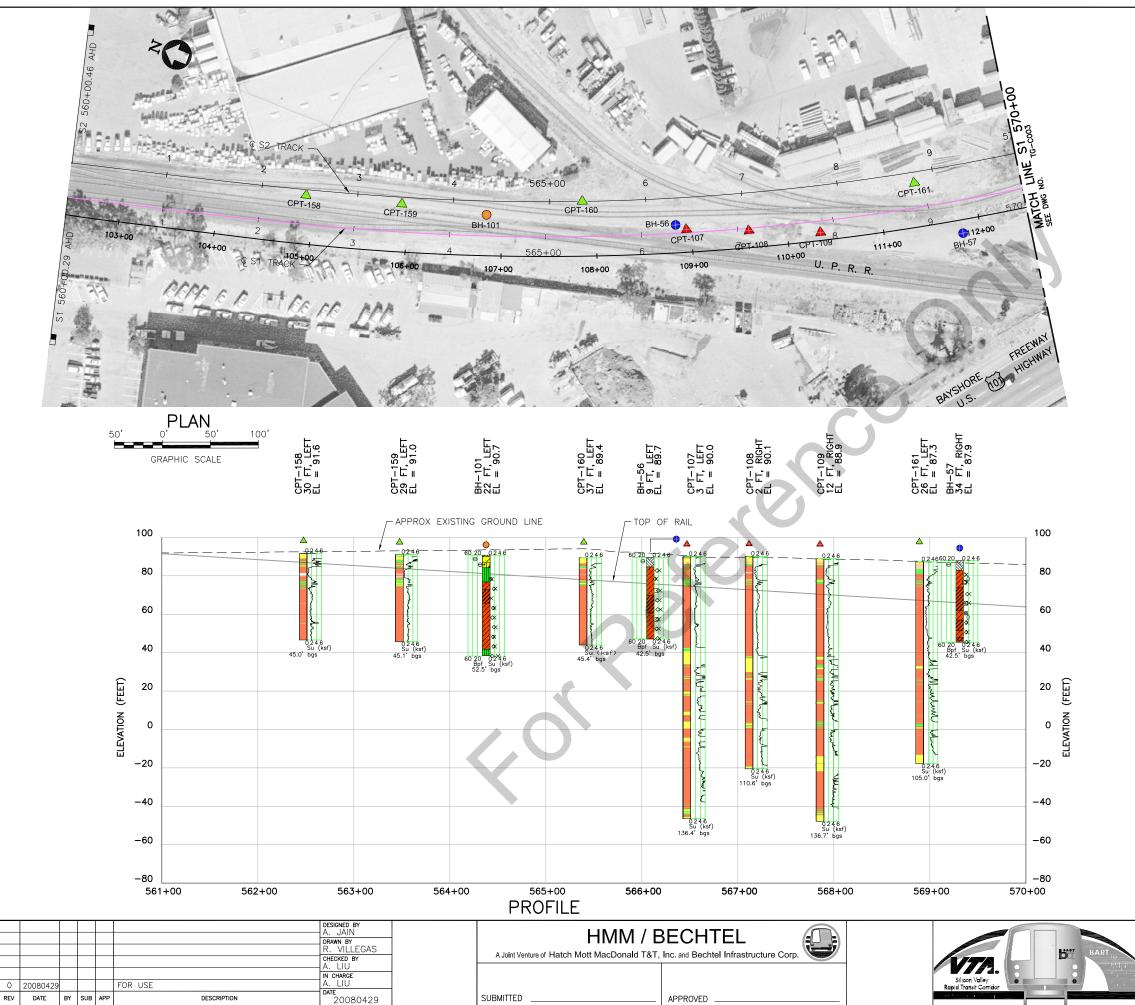

See disclaimer on cover page.

Figure 5-22 Geotechnical Plan and Profile with Classification Test Results: STA 829+00 to STA 843+99

See disclaimer on cover page.

Figure 5-23 Geotechnical Plan and Profile with Strength Parameters: STA 561+00 to STA 570+00

	SILICON VALLEY RAPID TRANSIT PROJECT	CADD FILENAME D300-S-TG-C023-A.dwg
	CENTRAL AREA GUIDEWAY	SIZE SCALE B 1"=100'H; 1"=50'V
	With Strength Parameters	D300 REV.
Å	S1 STA 561+00 TO STA 570+00	AREA CODE SHEET NO. PAGE NO.


Figure 5-24 Geotechnical Plan and Profile with Strength Parameters: STA 570+00 to STA 584+00

orecence

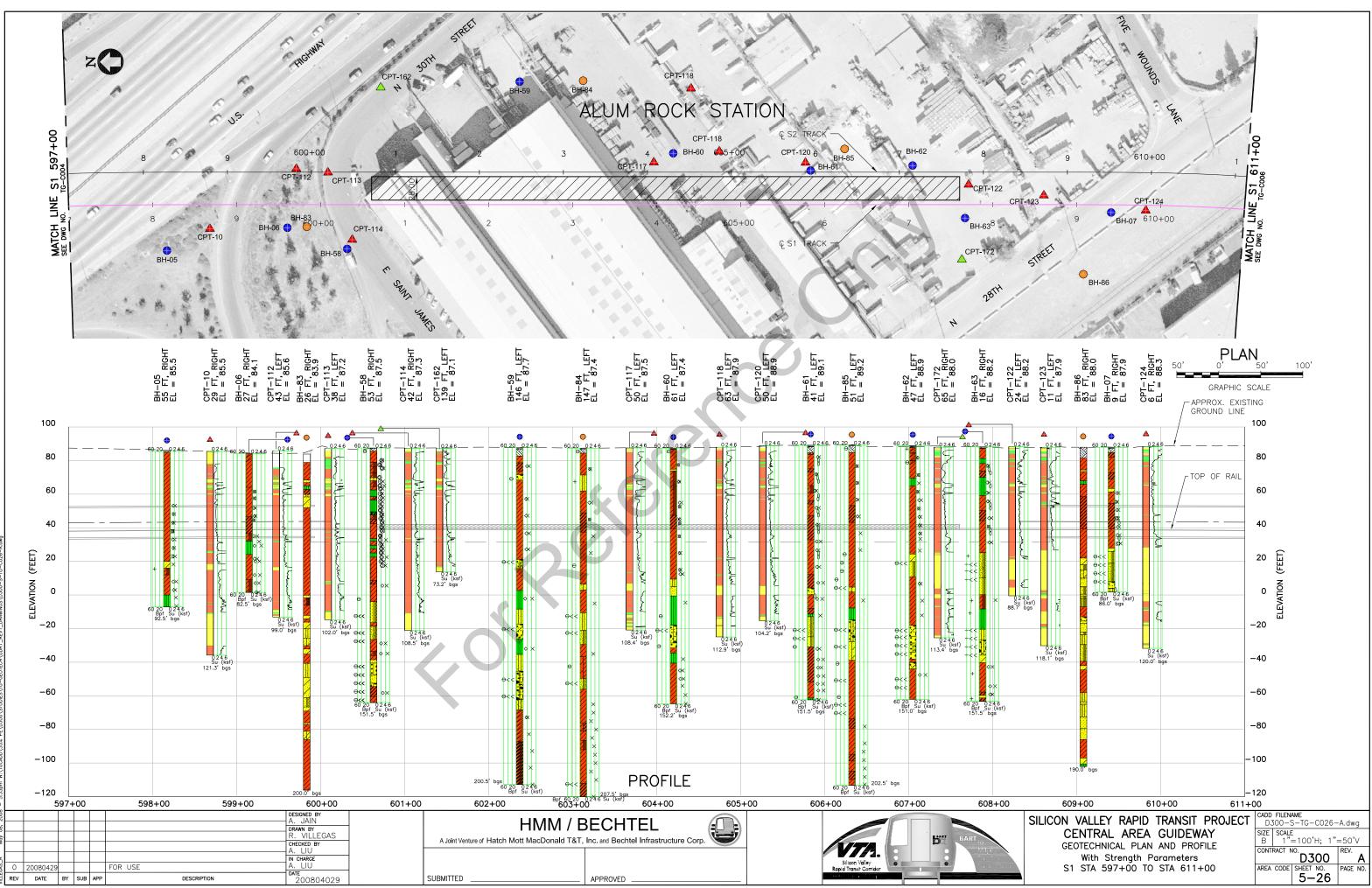
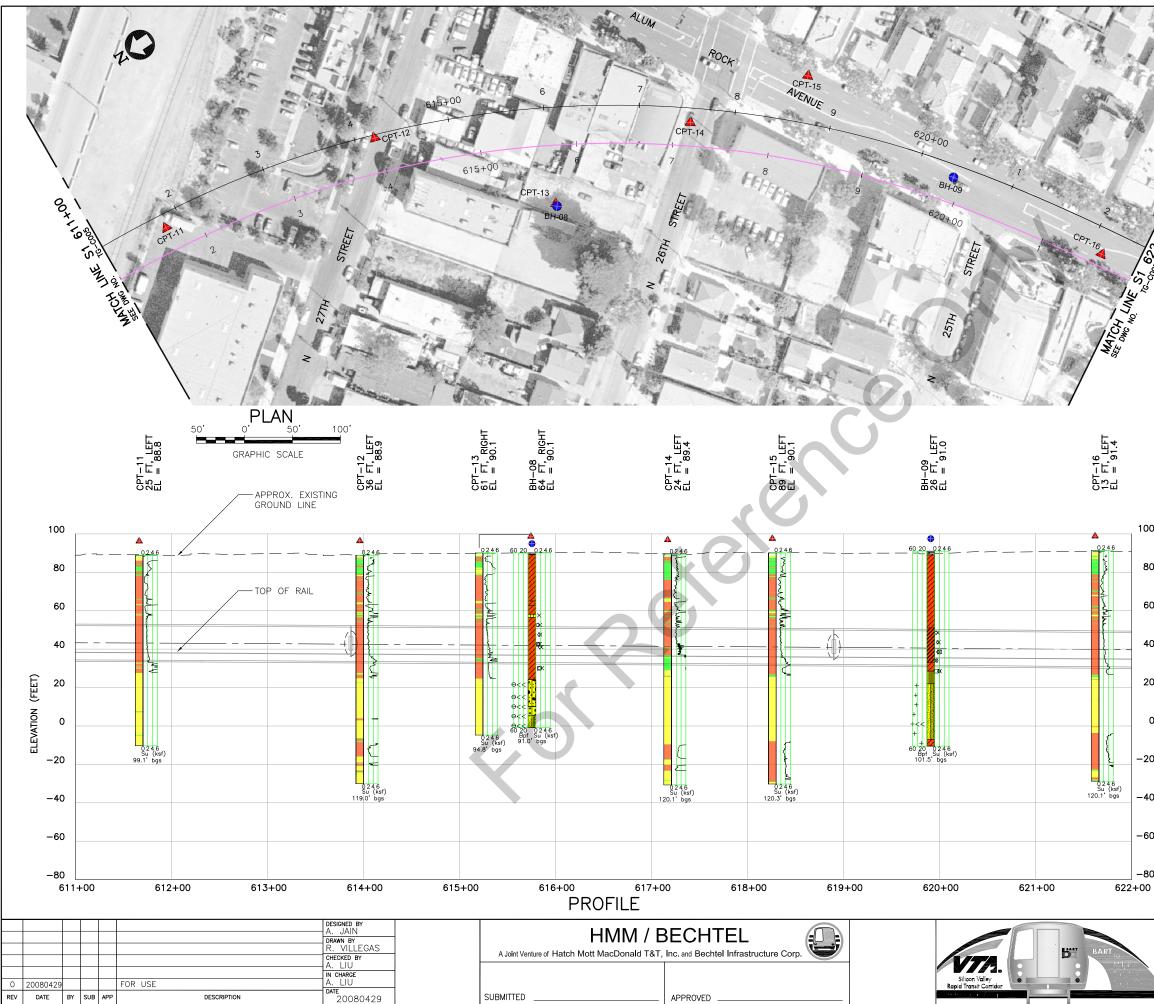

See disclaimer on cover page.

Figure 5-25 Geotechnical Plan and Profile with Strength Parameters: STA 584+00 to STA 597+00

See disclaimer on cover page.


Figure 5-26 Geotechnical Plan and Profile with Strength Parameters: STA 597+00 to STA 611+00

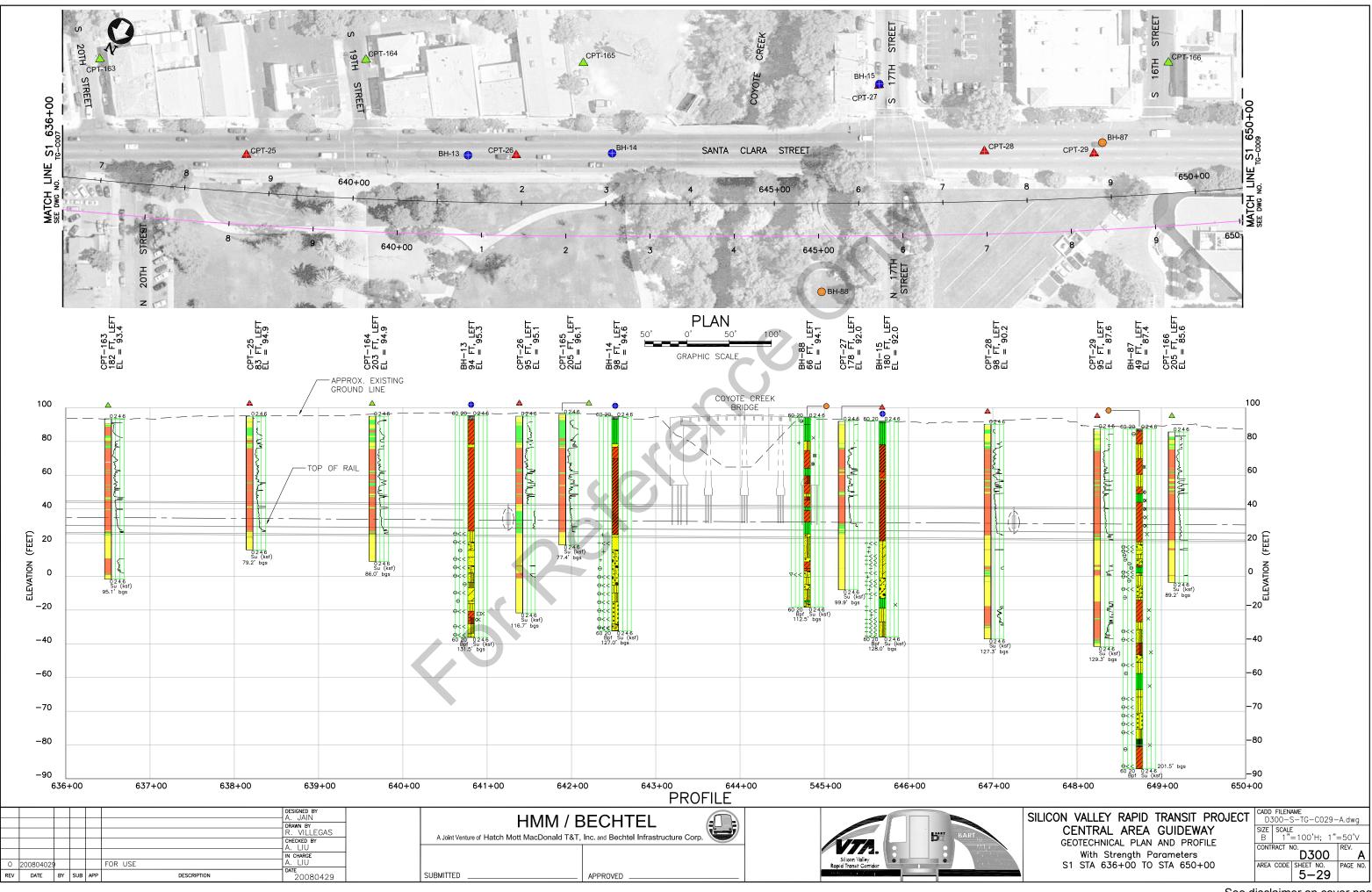
See disclaimer on cover page.

Figure 5-27 Geotechnical Plan and Profile with Strength Parameters: STA 611+00 to STA 622+00

orecence

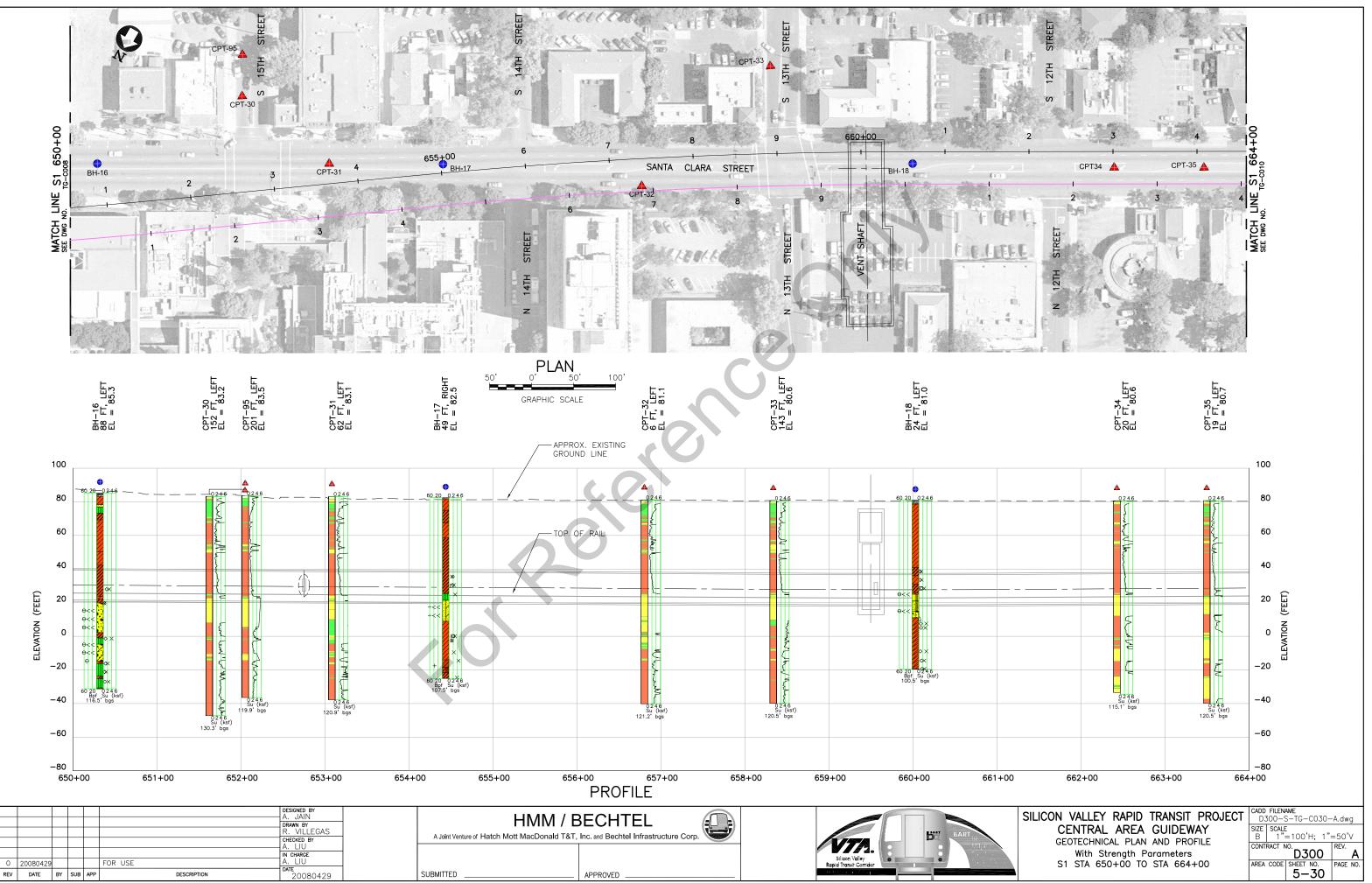
2003 52 400 - C		
00		
30		
60		
ŧ0		
20	ដ	
0	ELEVATION (FEET)	
20	ELEVAT	
50		
30		
0		
	SILICON VALLEY RAPID TRANSIT PROJECT CENTRAL AREA GUIDEWAY GEOTECHNICAL PLAN AND PROFILE With Strength Parameters S1 STA 611+00 TO STA 622+00	$\begin{array}{c} \mbox{CADD FILENAME} \\ \mbox{D300-}S-TG-C027-A.dwg \\ \mbox{SiZE} & SCALE \\ \mbox{B} & 1"=100'H; 1"=50'V \\ \mbox{CONTRACT NO.} & REV. \\ \mbox{CONTRACT NO.} & D300 \\ \mbox{Area CODE} & SHEET NO. \\ \mbox{SHEET NO.} & PAGE NO. \\ \mbox{S-27} & $

Figure 5-28 Geotechnical Plan and Profile with Strength Parameters: STA 622+00 to STA 636+00


orecence

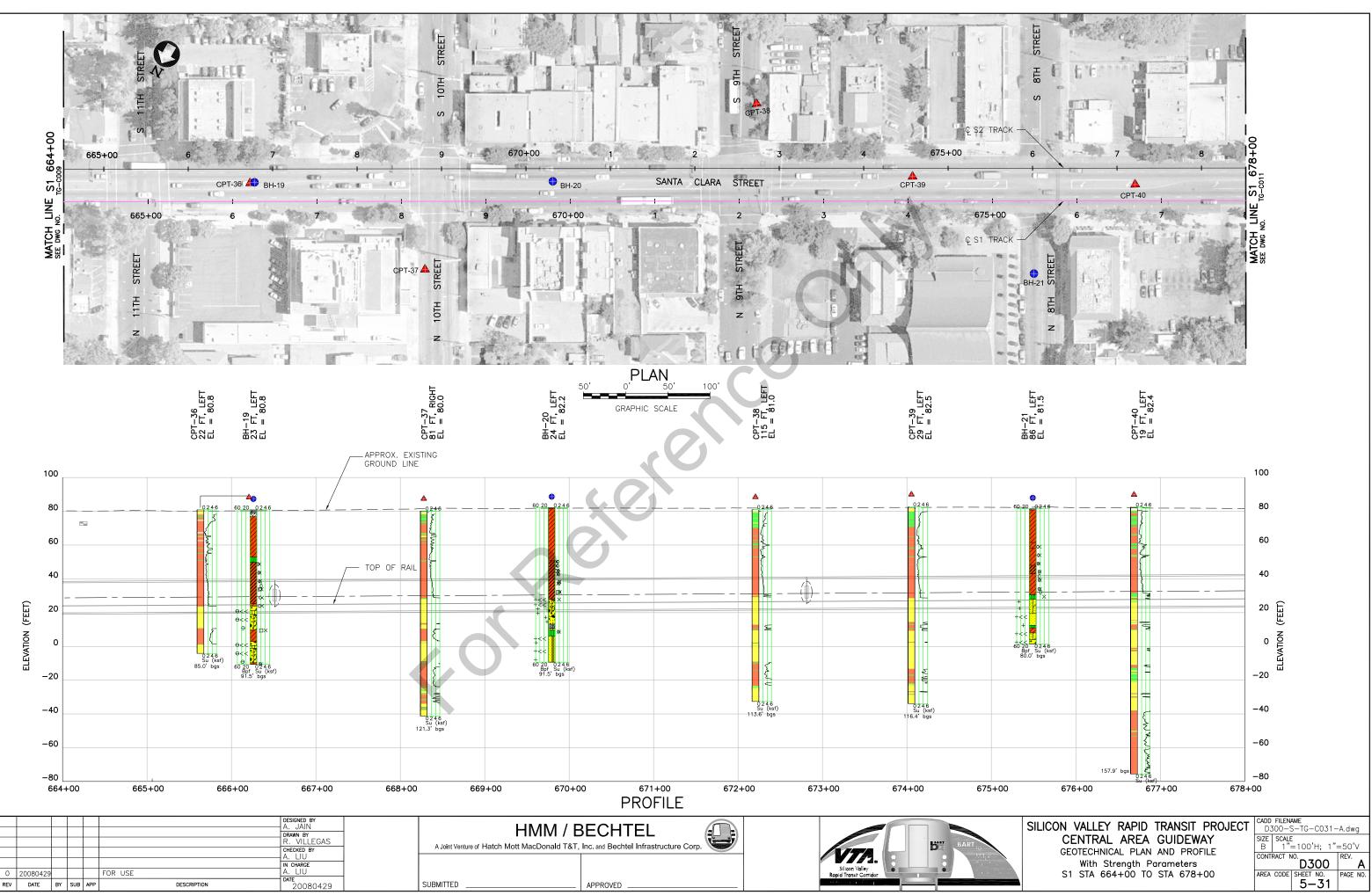
See disclaimer on cover page.

Figure 5-29 Geotechnical Plan and Profile with Strength Parameters: STA 636+00 to STA 650+00


orecence

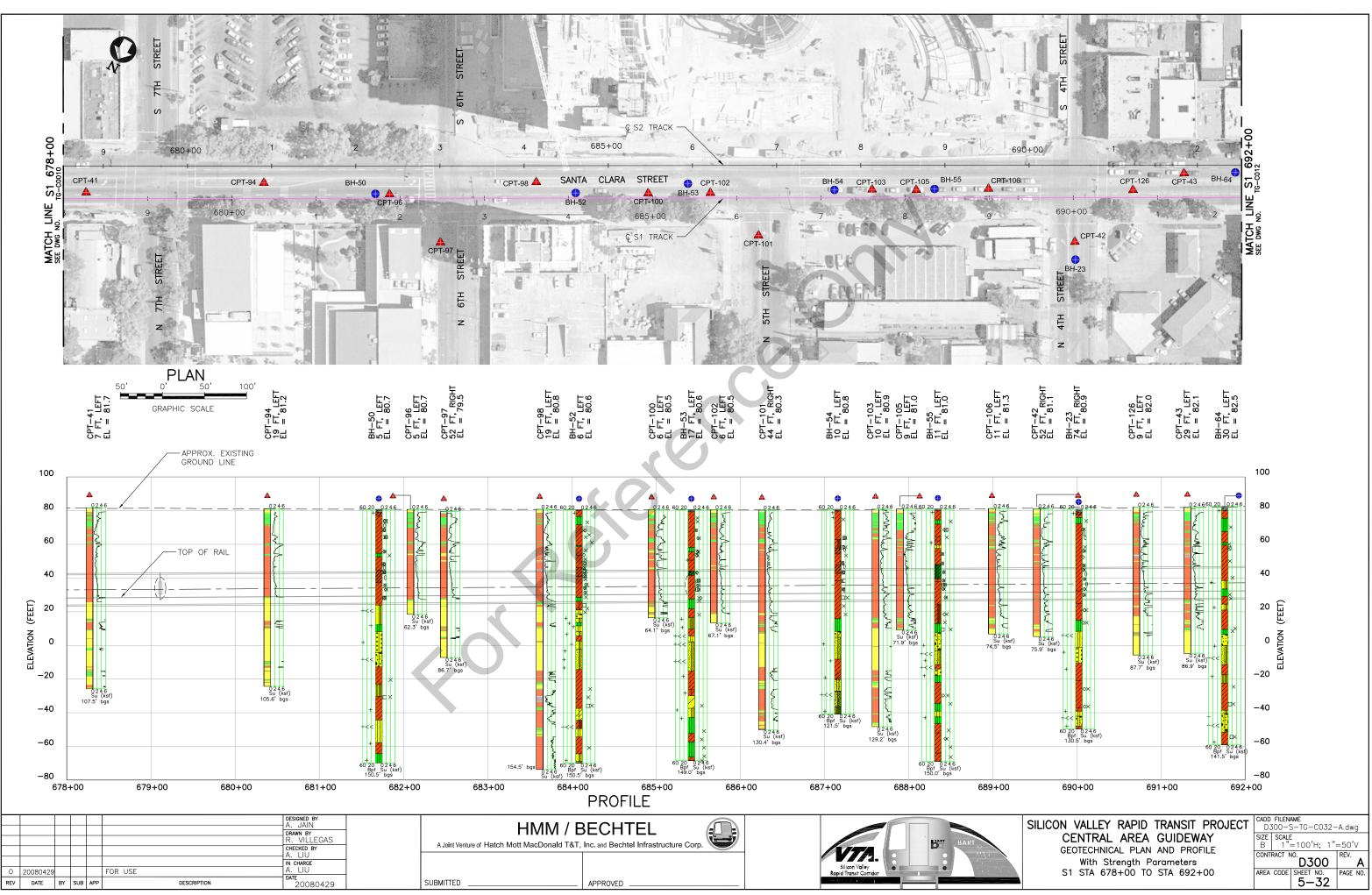
See disclaimer on cover page.

Figure 5-30 Geotechnical Plan and Profile with Strength Parameters: STA 650+00 to STA 664+00


orecence

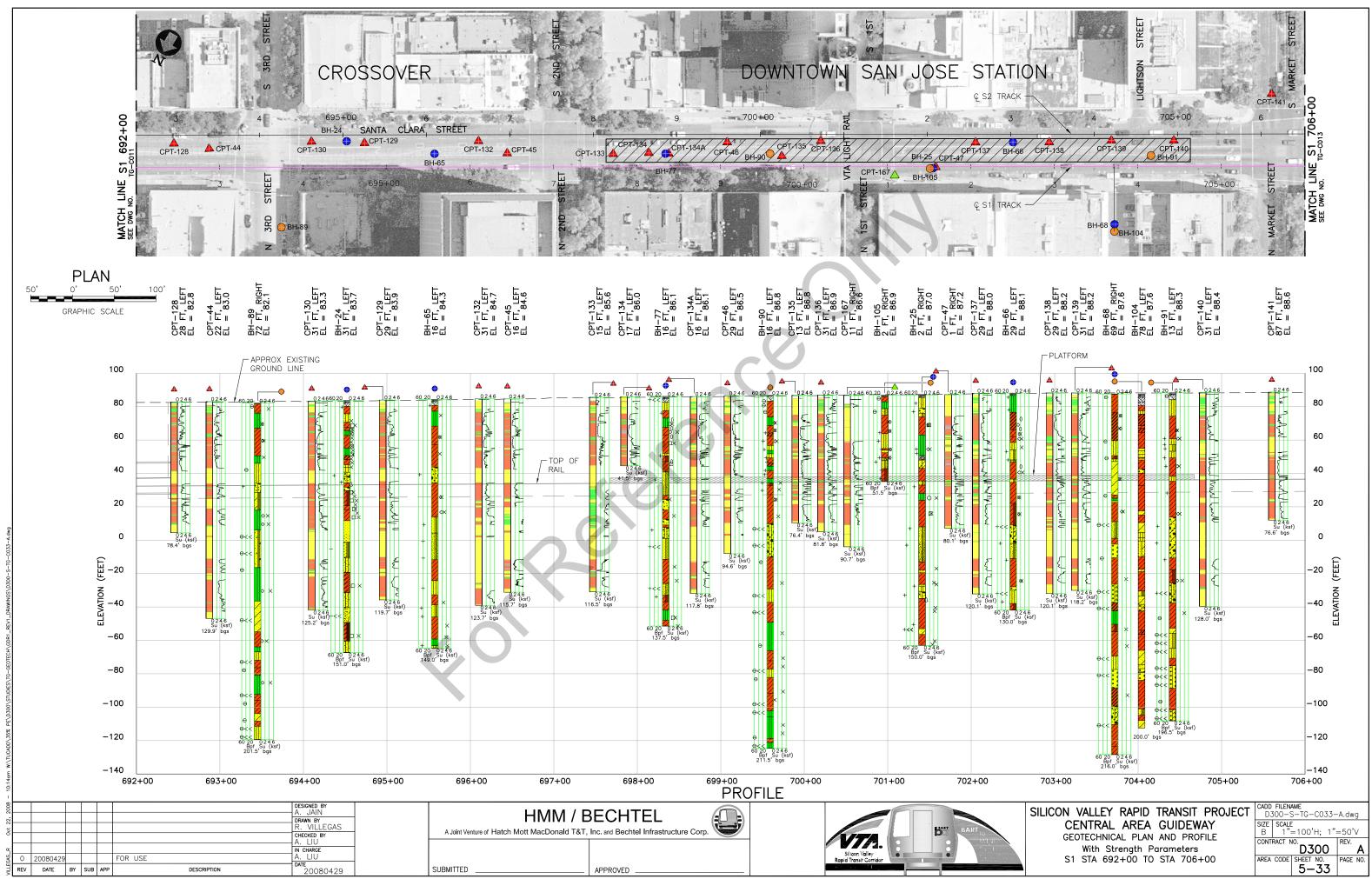
See disclaimer on cover page.

Figure 5-31 Geotechnical Plan and Profile with Strength Parameters: STA 664+00 to STA 678+00


orecence

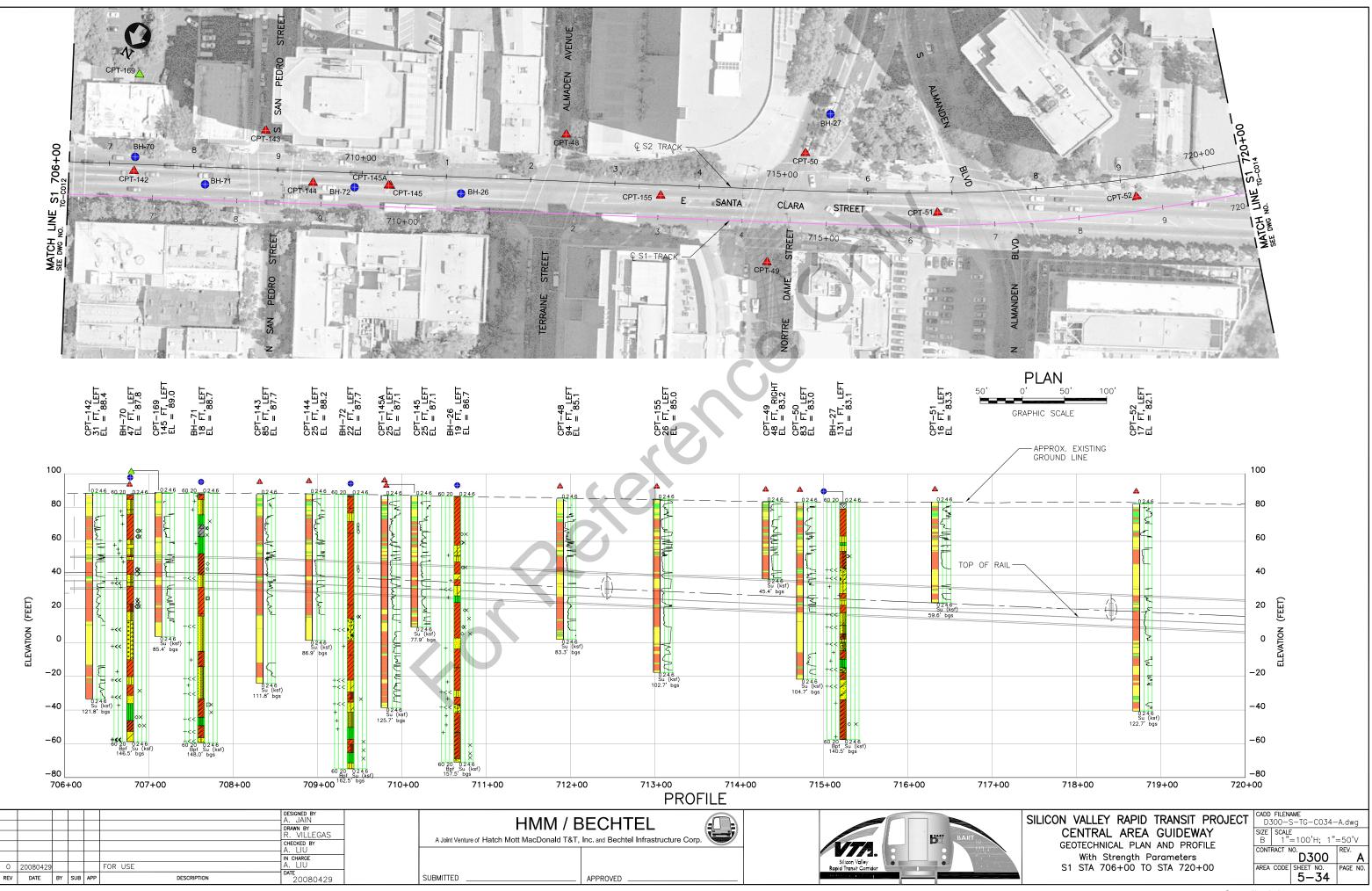
See disclaimer on cover page.

Figure 5-32 Geotechnical Plan and Profile with Strength Parameters: STA 678+00 to STA 692+00


orecence

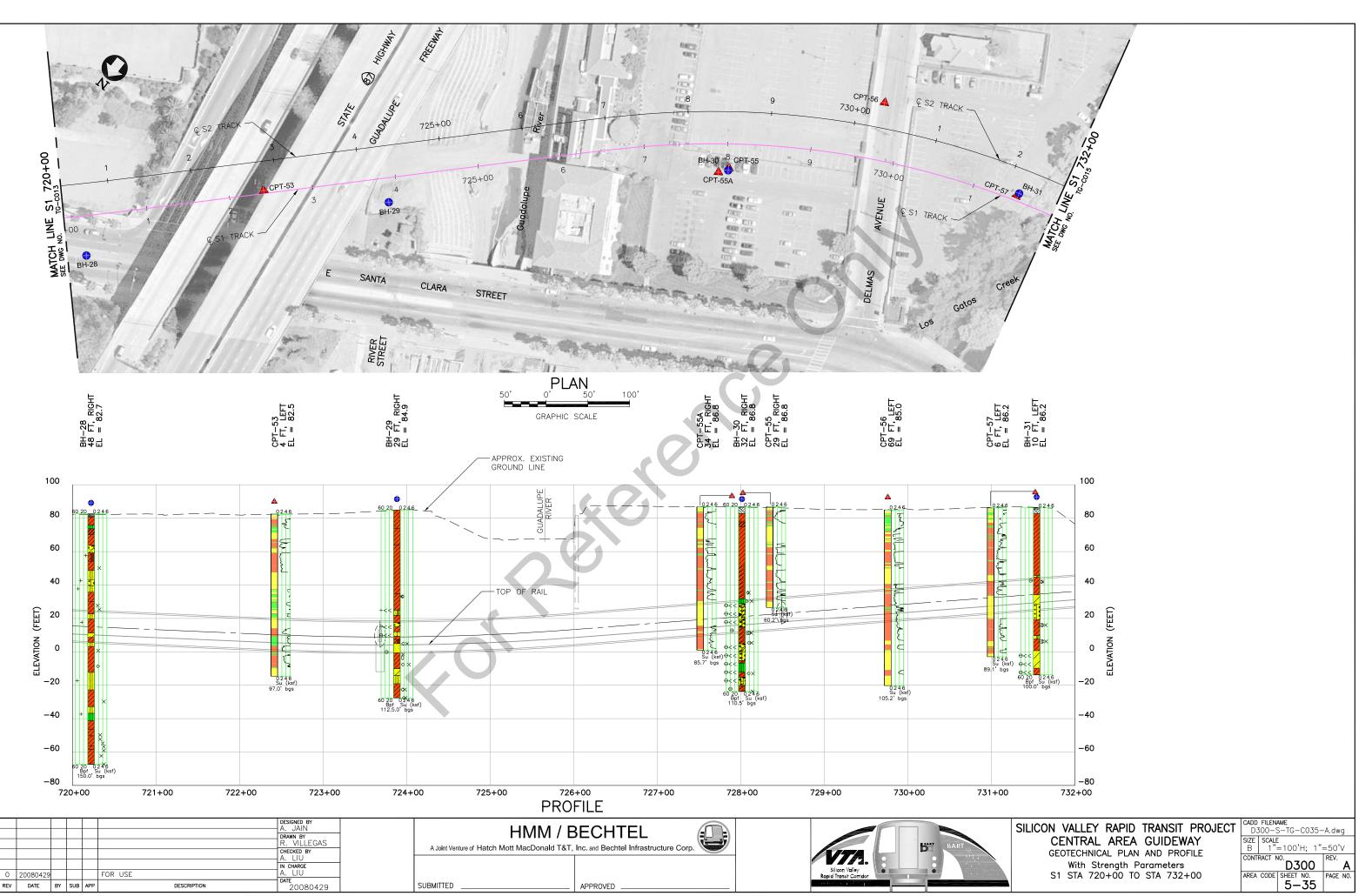
See disclaimer on cover page.

Figure 5-33 Geotechnical Plan and Profile with Strength Parameters: STA 692+00 to STA 706+00


orecence

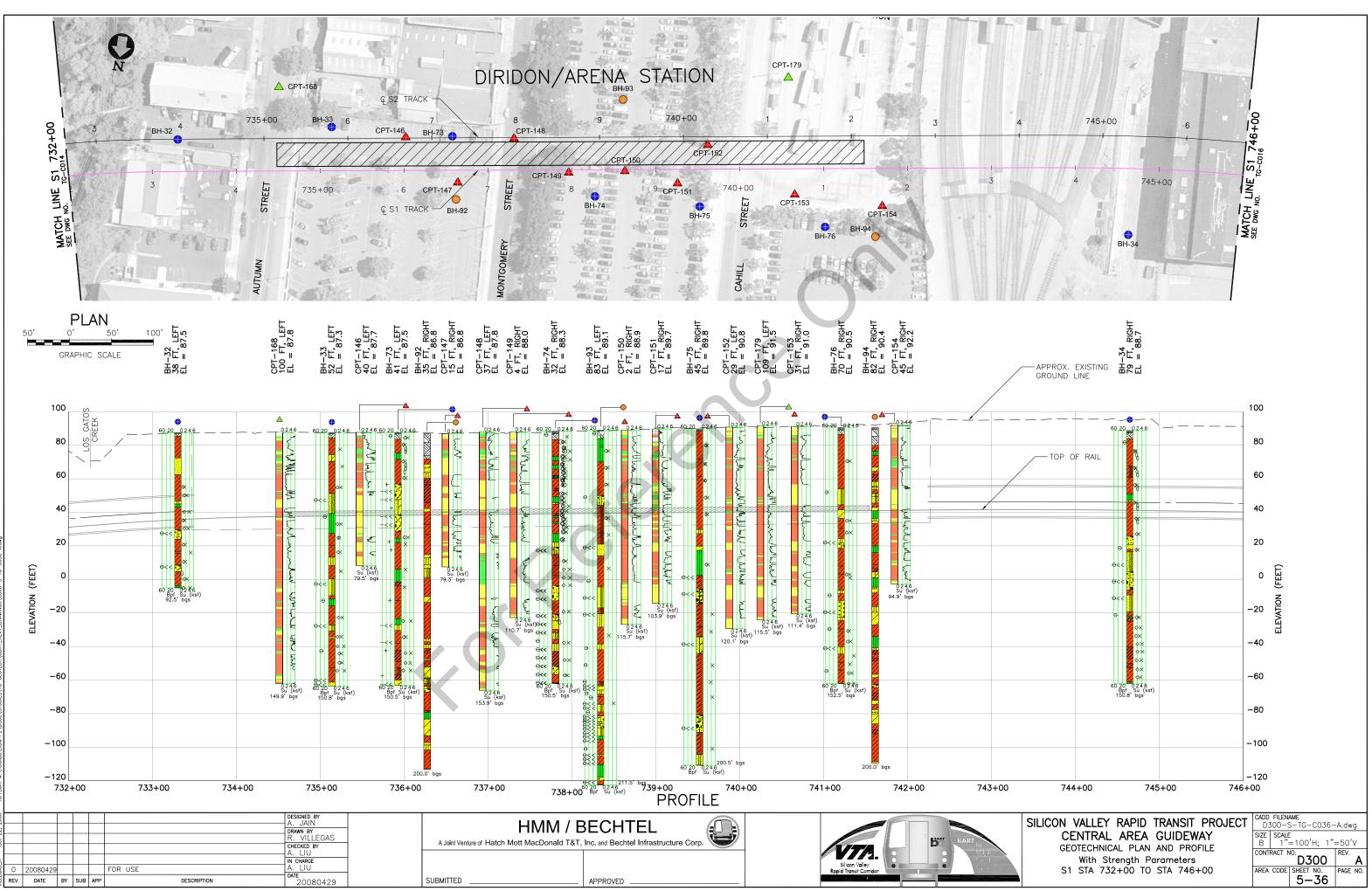
See disclaimer on cover page.

Figure 5-34 Geotechnical Plan and Profile with Strength Parameters: STA 706+00 to STA 720+00


orecence

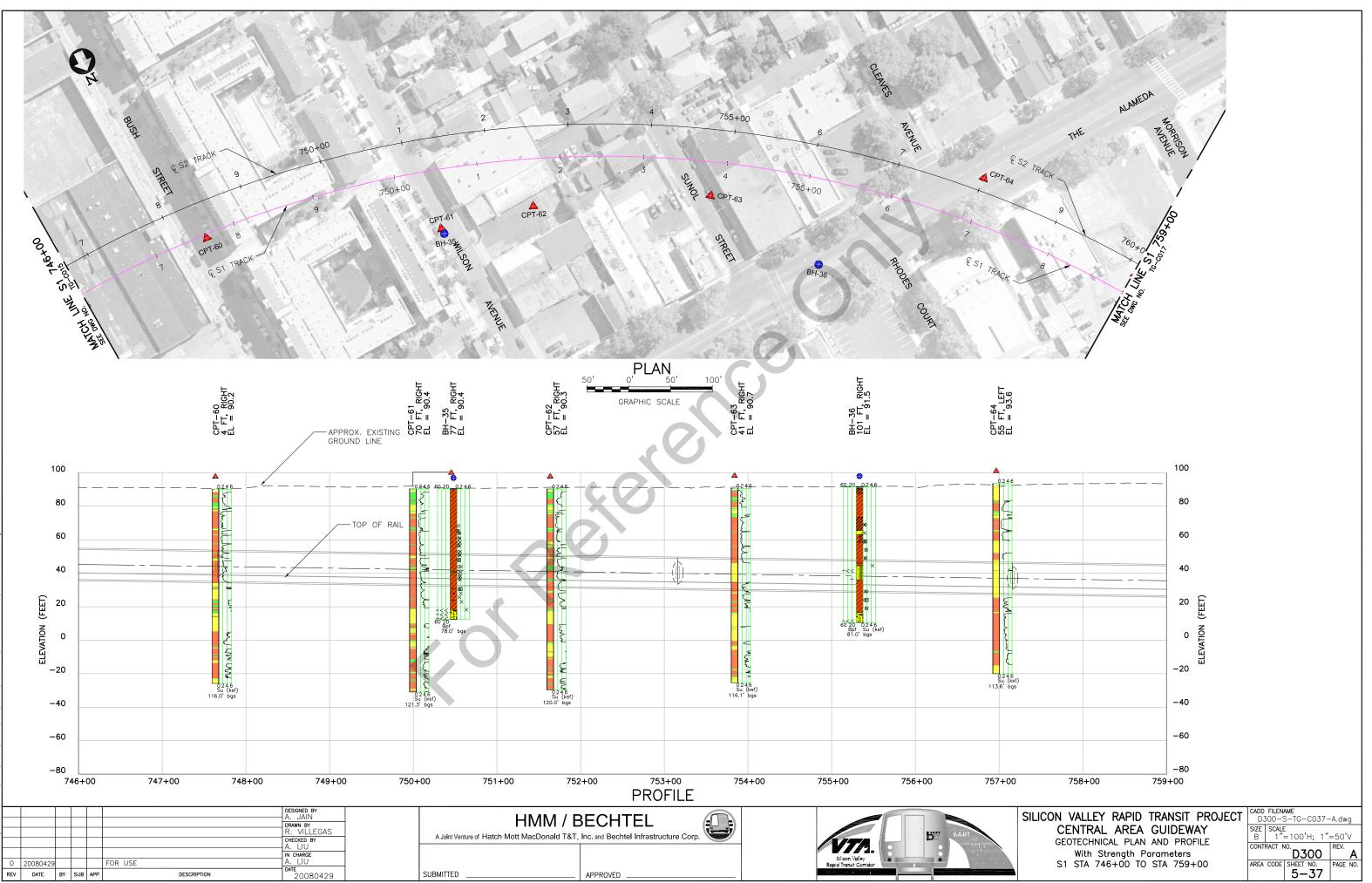
See disclaimer on cover page.

Figure 5-35 Geotechnical Plan and Profile with Strength Parameters: STA 720+00 to STA 732+00


orecence

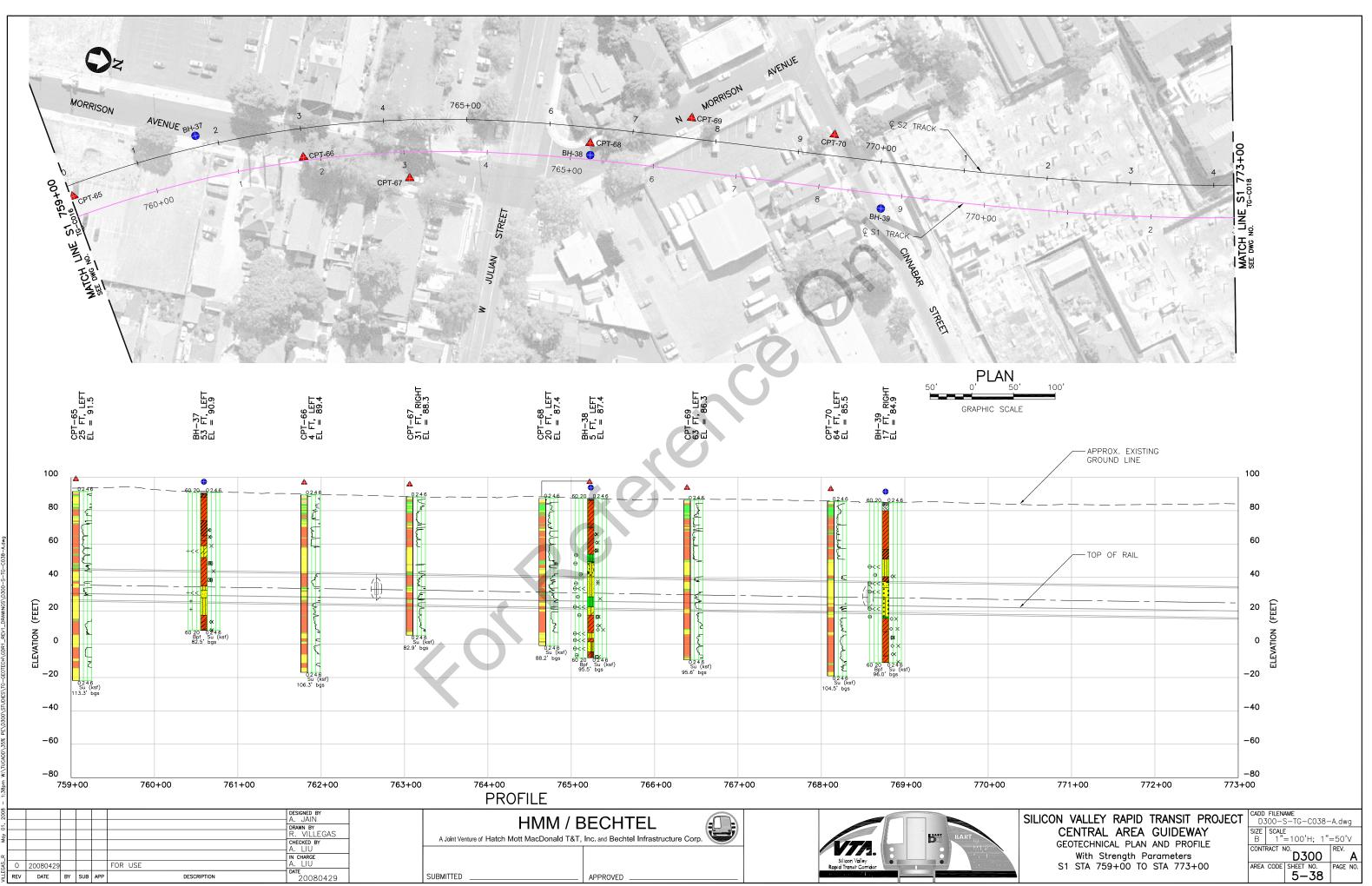
See disclaimer on cover page.

Figure 5-36 Geotechnical Plan and Profile with Strength Parameters: STA 732+00 to STA 746+00


orecence

See disclaimer on cover page.

Figure 5-37 Geotechnical Plan and Profile with Strength Parameters: STA 746+00 to STA 759+00


orecence

See disclaimer on cover page.

Figure 5-38 Geotechnical Plan and Profile with Strength Parameters: STA 759+00 to STA 773+00

orecence

See disclaimer on cover page.

Figure 5-39 Geotechnical Plan and Profile with Strength Parameters: STA 773+00 to STA 787+00

orecence

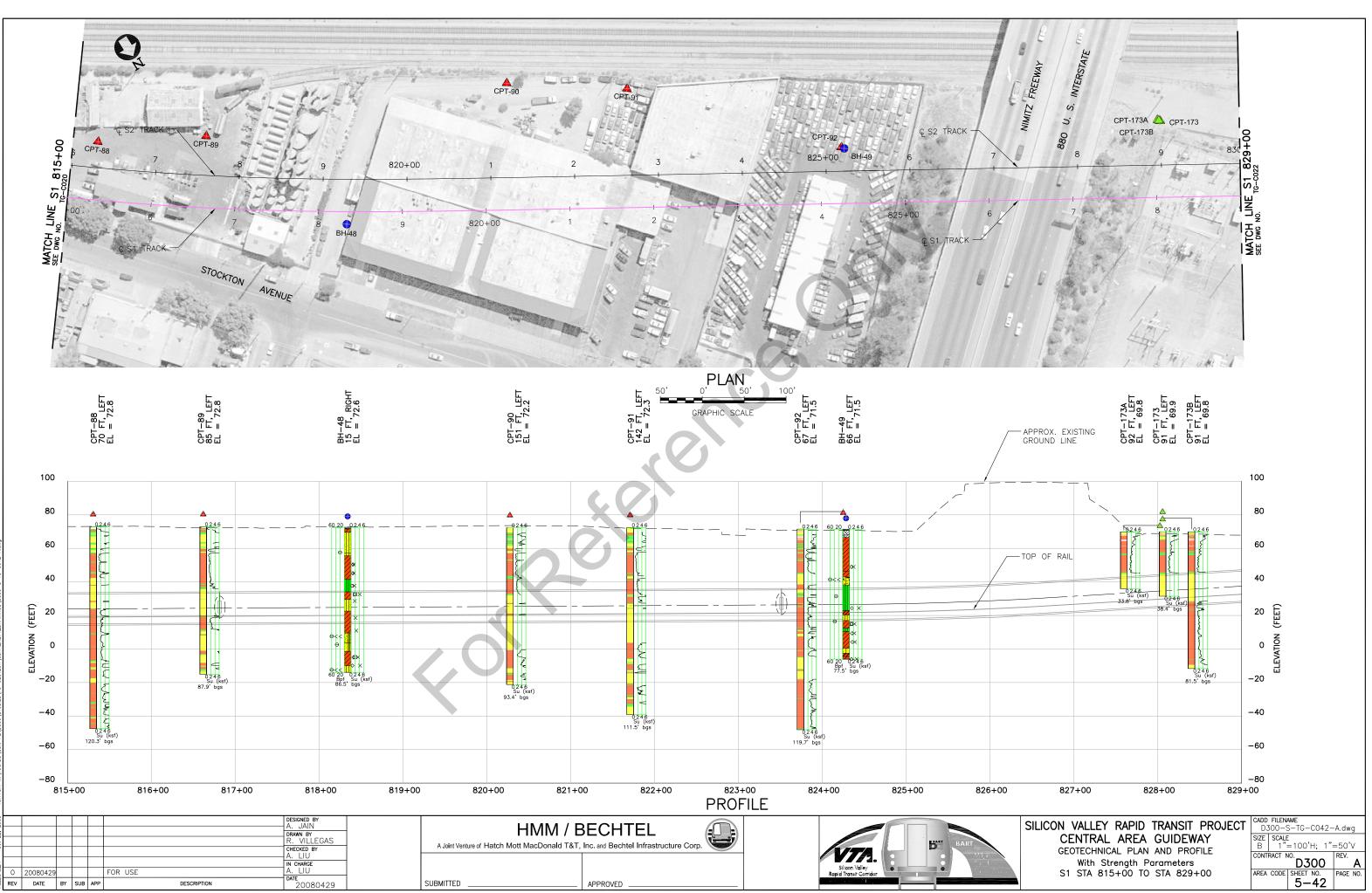
See disclaimer on cover page.

Figure 5-40 Geotechnical Plan and Profile with Strength Parameters: STA 787+00 to STA 801+00

orecence

See disclaimer on cover page.

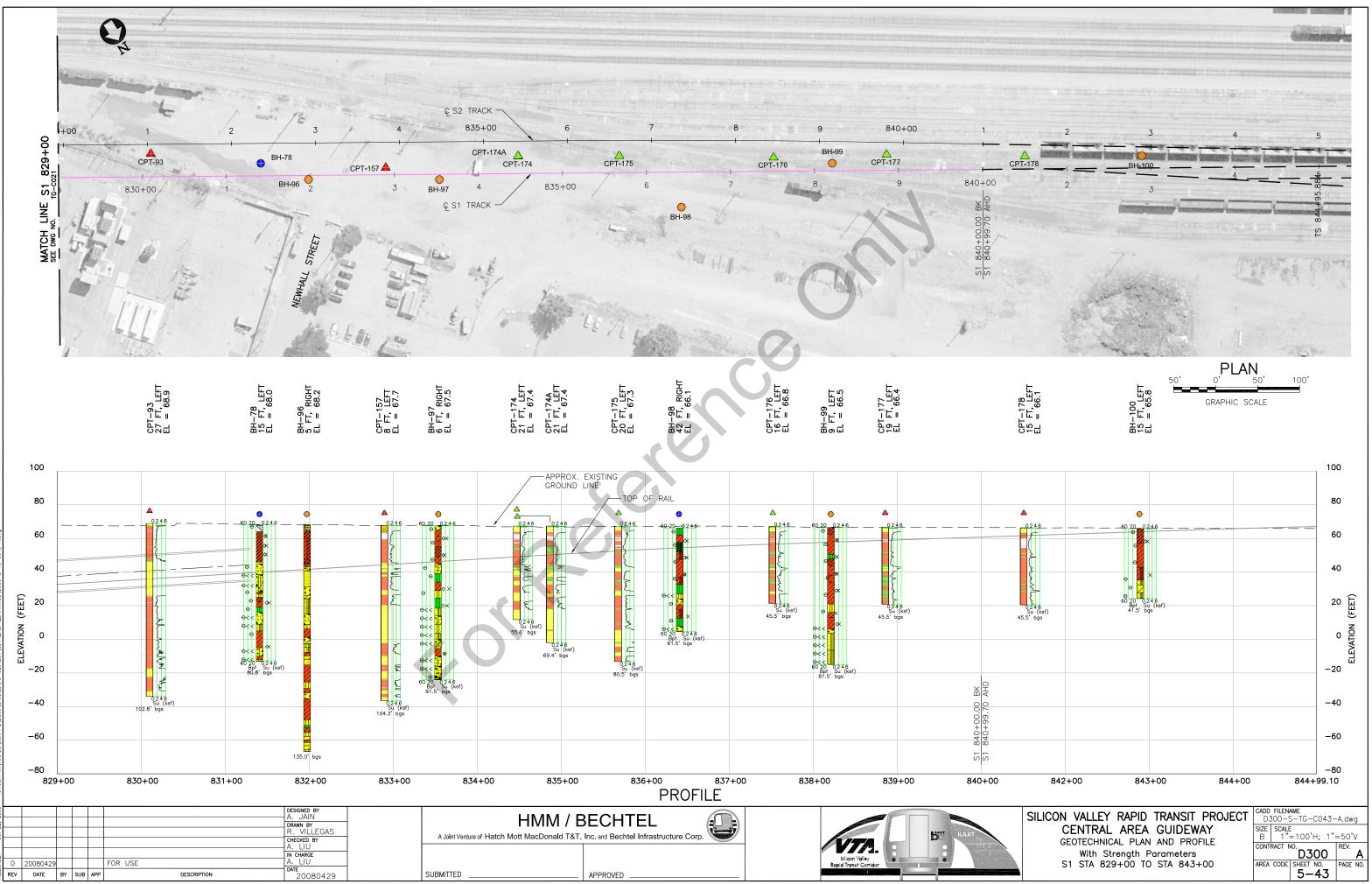
Figure 5-41 Geotechnical Plan and Profile with Strength Parameters: STA 801+00 to STA 815+00


orecence

See disclaimer on cover page.

Figure 5-42 Geotechnical Plan and Profile with Strength Parameters: STA 815+00 to STA 829+00

orecence



See disclaimer on cover page.

Figure 5-43 Geotechnical Plan and Profile with Strength Parameters: STA 829+00 to STA 843+99

orecence

ForReference

See disclaimer on cover page.

Forkerence

See disclaimer on cover page.

REFERENCES

American Society for Testing and Materials: Annual Book of ASTM Standards

Douglas, Y., Zavala, B. (2002). "Ground-water sampling guidelines for Supefund and RCRA project managers," Ground Water Forum Issue Paper

Duku, P.M., Stewart, J. P., Whang, D. D., Venugopal, R. (2007). "Digitally controlled simple shear apparatus for dynamic soil testing," Geotech. Testing Journal, ASTM, 30 (5), 368-377.

HMM/Bechtel (2004). "Review of Available Geotechnical Data-Bart to San Jose Project, Segments 3 and 4," Report No P0503-D300-RPT-GEO-001, issued to VTA.

HMM/Bechtel (2005a). "Tunnel Segment Geotechnical Data Report," Report No P0503-D300-RPT-GEO-002, Rev. 0 issued to VTA.

HMM/Bechtel (2005b). "Tunnel Segment Hydrogeology Report," Report No P0503-D300-RPT-DE-020, Rev. 0 issued to VTA.

HMM/Bechtel (2007). "Tunnel Segment Design Quality Plan," Plan No P0503-D300-PLN-QC-001, issued to VTA.

HMM/Bechtel (2008). "Pumping Test Data Report," Plan No P0503-D300-RPT-GEO-005, Rev. 0 issued to VTA.

Nilsen, B., Dahl, F., Holzhauser, A., Raleigh, P. (2007). "New Test Methodology for estimating the abrasiveness of soils for TBM tunneling," RETC 2007 Proceedings, pp. 104-116.

Robertson, P., K. (1990). "Soil Classification Using the Cone Penetration Test," *Canadian Geotechnical Journal*, v. 27.

Robertson, P. K., Campanella, R. G., Gillespie, D. and Greig, J. (1986). "Use of Piezocone Data," *Proceedings of the ASCE Specialty Conference In-situ 1986: Use of In-situ Tests in Geotechnical Engineering*, Blacksburg, 1263-80.

URS (2003). "Geotechnical Exploration Findings and Recommendations Report, Santa Clara Valley Transportation Authority (VTA), Bart Extension to Milpitas, San Jose and Santa Clara, 10% Conceptual Engineering" Vol. II: Tunnel and Underground Stations Segment." Prepared for Earth Tech, Inc., October 2003.

U.S. Army Corps of Engineers (1970). "Laboratory Soils Testing ", EM 1110-2-1906, Nov. 30, 1970.

This page is intentionally left blank.

orecence

APPENDICES

orecence

This page is intentionally left blank.

or Reference

Appendix 1: Logs of Borings

orecence

INTRODUCTION

Parikh Consultants, Inc. (PCI), was retained to perform subsurface exploration for 65 % Engineering Design phase of Silicon Valley Rapid Transit (SVRT) project. They performed the exploration from June 4, 2007 through August 1, 2007. The work was performed in general accordance with the project scope and technical specifications prepared by us.

PURPOSE AND SCOPE

The purpose of this exploration was to obtain and provide subsurface data along the proposed tunnel alignment for the project. The scope included performing 19 rotary wash borings to different depths. The depths of borings ranged from 40 feet to 210.5 feet. The summary of exploration program is provided in Table A1-1. Pitcher Drilling Company (Pitcher) was retained as the driller. One to two drilling crews were utilized. A similar methodology used during 35 % Preliminary Engineering phase was employed for rotary wash drilling, sampling and logging, as described in Appendix 1 of 'Tunnel Segment Geotechnical Data Report, Vol. II of VI, P0503-D300-RPT-GEO-002, Rev. 0 (HMM/Bechtel, September 2005). In addition to the samplers used during 35% phase, a geo-barrel and California samplers were also used to obtain disturbed samples during this phase of investigations. Specifications of these samplers are noted on Figure A1-1. The boring logs were presented to us in gINT database software format. The gINT database software acts as a repository of the borings data. We provided the gINT templates. The gINT produced boring logs are provided in Figures A1-2 through A1-21. The boring log for BH-81, which was performed near the end of 35% engineering design phase, is also included.

See disclaimer on cover page.

	Boring Depth	Surface		Of	fset	Structure	
Exploration	(ft)	Elevation (ft)	Station (ft)	(ft)	R/L	Туре	Driling Type
East Portal							
BH-101	52.5	90.8	564+38	22	L	Portal	RW
BH-082	92.5	85.9	570+08	22	L	Portal	RW
Alum Rock Stat	tion						
BH-083 [#]	200.0	83.9	599+84	26	R	Station	S
BH-084	207.5	87.4	603+12	148	L	Station	RW
BH-085	202.5	89.2	606+32	51	L	Station	RW
$BH-086^{\#}$	190.0	88.0	609+08	83	R	Station	S
Tunnel from Al	um Rock Statio	n to Crossove	er/Downtown St	ation			•
BH-087	201.5	87.4	648+42	103	L	Tunnel	RW
BH-088	112.5	94.1	645+03	66	R	Tunnel	RW
Crossover/Dow	ntown Station					•	•
BH-089	201.5	82.1	693+74	72	R	Station	RW
BH-090	211.5	86.8	699+59	16	L	Station	RW
BH-105	51.5	86.9	701+51	2	R	Station	RW
BH-104 [#]	200.0	87.6	703+72	78	R	Station	S
BH-091	196.5	88.3	704+16	13	L	Station	RW
Diridon/Arena S	Station						-
BH-092 [#]	200.0	86.8	736+62	35	R	Station	S
BH-093	211.5	89.1	738+61	84	L	Station	RW
BH-094 [#]	200.0	90.4	741+61	82	R	Station	S
Tunnel from Cr	ossover/Downt		o West Portal			~	~
BH-081*	150.5	81.5	789+62	19	L	Tunnel	RW
BH-095	101.5	83.1	774+14	49	R	Tunnel	RW
BH-102	80.0	80.4	796+49	19	L	Tunnel	RW
BH-103	90.5	79.8	798+17	19	L	Tunnel	RW
BH-106	90.0	78.3	800+21	31	L	Tunnel	RW
West Portal							
BH-096 [#]	135.0	68.2	831+98	5	R	Portal	S
BH-097	91.5	67.5	833+53	6	R	Portal	RW
BH-098	61.5	66.1	836+41	42	R	Portal	RW
BH-099	81.5	66.5	838+21	9	L	Portal	RW
BH-100**	41.5	65.8	842+89	15	L	Portal	RW

 Table A1-1
 Summary of Exploratory Borehole Program - Phase 2 65% Engineering Design Investigation

 Silicon Valley Rapid Transit Project - Central Area Guideway

Notes

A. Stations and offsets are based on the April 25, 2008 S1 track alignment.

B. RW = Rotary Wash, S = Sonic, R/L = Right/Left of S1 track alignment.

C. * BH-81 was completed near the end of 35% engineeting design phase, and therefore could not be included in the 'Tunnel Segment Geotechnical Data Report (HMM/Bechtel, 2005a)'. Information from BH-81 is included in this Phase Two - 65% Engineering Design Report.

D. ** Stationing for BH-100 shown is based on Western Area Guideway alignment stationing (outside of tunnel alignment stationing).

E. [#]Part of pumping test program, and included in 'Pumping Test Data Report (HMM/Bechtel, Feb 2008)'.

	MAJOR D	IVISIONS			G	ROUP NAMES			GE	NERAL NOTES
		Clean gravels	GW		Wel	II-Graded Gravel			Classifica D2488	tion of Soils per ASTM D2487 or
		less than 5% - fines	GP		•	rly Graded Gravel			Geologic	Formation noted in bold font at the
	-		GW-GM			II-Graded Gravel with	Silt			rpreted interval ed Blowcounts for Modified
LS L	GRAVELS	Gravels with	GW-GC			II-Graded Gravel with		Silty Clay)		Liner Sampler shown in () "
ve bei	GIVAVELO	5-12% fines	GP-GM		1	orly Graded Gravel with		,,,	Length of recovery I	sample symbol approximates enoth
COARSE-GRAINED SOILS More than 50% retained on the No. 200 sieve	MORE THAN 50% OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	-	GP-GC	• • •		orly Graded Gravel with		or Silty Clay)		nple No. column indicates that there
KAII 150% 10.20	RETAINED ON NO. 4 SIEVE		GM		Silty	/ Gravel				covery during sampling.
the N		Gravels with more than	GC	1/1/	Clay	yey Gravel				f blows with 140 lb. hammer, falling
AKS More		12% fines	GC-GM		Silty	, Clayey Gravel				Irive sampler 1-ft. after seating 6-in.; for example,
2 2		Clean sand	SW		Wel	II-Graded Sand			Blows/ft	Description
		less than 5% fines	SP		Poo	rly Graded Sand			25	25 blows drove sampler 12" after initial 6" of seating
	SANDS		SW-SM		Wel	II-Graded Sand with S	ilt		50/7"	50 blows drove sampler 7" after
		Sands with	SW-SC		Wel	II-Graded Sand with C	lay (or S	Silty Clay)	Def/2"	initial 6" of seating
	MORE THAN 50% OF COARSE FRACTION PASSING NO. 4 SIEVE	5-12% fines	SP-SM		Poo	orly Graded Sand with	Silt		Ref/3"	50 blows drove sampler 3" during initial 6" seating interval
			SP-SC		Poo	rly Graded Sand with	Clay (or	Silty Clay)	STRENG	(Ref=Refusal)
	-	0 1 11	SM		Silty	/ Sand			U = Unco	nfined Compression
		Sands with more than	SC		Clay	yey Sand				nsolidated Undrained Triaxial et Torvane (tv)
		12% fines	SC-SM		Silty	, Clayey Sand			P = Pocke	et Penetrometer (pp) ture Vane Shear Test
S	SILTS	AND CLAYS	ML		Silt					Vane Shear Test (vs)
SOILS sses we			CL		Lea	n Clay			OTHER	
	Liquid Lir	mit Less than 50%	CL-ML		Silty	/ Clay				Consolidation OVM = Organic Vap
AINE more 200			OL	<u> </u>	Org	anic Silt				cific Gravity Measuremer ticle Size Analysis
FINE-GRAINED 50% or more par the No. 200 sie		AND CLAYS	МН		Elas	stic Silt				ssuremeter ver Explosive Limit
INE-G 50% the			СН		Fat	Clay			OXY = Ox	ygen Level Reading (%) rbon dioxide Level Reading (ppm)
ш	Liquid Limi	it Greater than 50%	OH	¥/¥/	Org	anic Clay			CH4 = Me	thane Level Reading (ppm)
	HIGHLY ORG	ANIC SOILS	РТ	him	Реа	t or Highly Organic So	oils		H2S = Hy	drogen Sulphide Level Reading (ppn
			FILL			oris or Mixed Fill			WATER	LEVEL SYMBOLS
			AC	0-0-0-	Bas	halt Concrete Paveme	ent with	Aggregate	⊈ Mea	sured Depth to Water
			BASE	<u>/o ol/o d/o</u>		regate Base				pages encountered
		SAMPLER T		4.4.					50// 5	TRUCTURE
Sam	1 plers and sample	2 3 J	4 BB PS	6 GB 7 GB	CS ort te	xt) are as follows:	Pocke Partir	usually mor et: Inclusion of of the sample ng: Inclusion les	shrinkage or reli e or less vertical material of differe e. ss than 1/8 inch t	ef cracks, often filled with fine sand or sill ent texture that is smaller than the diamet hick extending through the sample.
1	SPT Sampler, d					n cuttings (BB))				thick extending through the sample.
	1 3/8" ID, 2" OD		5 Pitcher	Sampler (F	•	i outtings (DD))		0		s thick extending through the sample. f alternating partings or seams of differen
2	MOD CA Liner S 2.416" ID, 3" OD			D, 3" OD Irrel Sampl	er (C	B)	Lami	soil types		a atomating partings or seams of unlefel
3	Thin-walled Tub 2 7/8" ID. 3" OD	e, pushed (SH)	2 2/5" II	D, 4 3/4" Ol ia Samplei	D					of alternating layers of different soil type.
	2 //o ID, 3 OD			ID, 2.5" OE			Intern	nixed: Soil sam or laminat	ple composed of ed structure is n	f pockets of different soil type, and layered ot evident.
			lindenia	ed Shear	I	RELATIV				NCREASING VISUAL
	Clays	Blows/Foot SPT		ed Snear th (ksf)		Sands and Grav	vels	Blows/Foo SPT	π /	NOISTURE CONTENT
	Very Soft Soft	< 2 2 - 4		0.25		Very Loose		0 - 4		D
	Medium	4 - 8	0.5	5-1		Loose Medium Dens	20	4 - 10 10 - 30		Dry Moist
	Stiff Very Stiff	8 - 15 15 - 30		- 2 - 4		Dense	56	10 - 30 30 - 50		Wet
	Hard	> 30		er 4		Very Dense		Over 50		★

Information on each boring log is a compilation of subsurface conditions and soil or rock classifications obtained from the field as well as from laboratory testing of samples. Strata have been interpreted by commonly accepted procedures. The stratum lines on the logs may be transitional and approximate in nature. Water level measurements refer only to those observed at the time and places indicated, and can vary with time, geologic condition, or construction activity.

TERMS AND SYMBOLS USED ON BORING LOGS

FIGURE A1-1

Project No.	213213	

													Sheet 1 of 4
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Median of Stockton Ave., between Schiele Ave. and Villa Ave. N 1,949,237 E 6,151,102 SURFACE EL: 81.5 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
-		0-00				5 inches ASPHALT CONCRETE over 12 inches	+				+•••••		
-80	-	171				AGGREGATE BASE	1						
[-					LEAN CLAY (CL)							
-	-												
-	-0												
-75	-												
-	-												
ŀ	- 10-												
-70	-												
-	-										·····		• • • • • • • • • • • • • • • • • • • •
-	-					Σ					[
[15-												
-65	-									• • • • • • • •			
-	-												
I	-					0							
ŀ	20-						·····				+		
-60	-												
[-												
ŀ	-												
-	25-												
-55	-					SO.							
	-												
-	- 30						.						•••••
- 50	-					SANDY LEAN CLAY (CL)							
-	-						+						
-	-		1 10"	X	52	SILTY GRAVEL WITH SAND (GM), very dense, brown, moist, medium grained sand, subangular		7	12				
[35-					gravel up to 1 inch							
-45	-							• • • • • • • •					
ŀ	-												
[-					POORLY GRADED SAND WITH GRAVEL (SP), very dense, brown, moist, medium grained sand,							
ŀ	40-					subangular gravel up to 1 inch (LEL=0.0, OVM=0.0,						+	
-40	-		2 8"	\ge	79	OXY=19.8)							
[-			X									
-	- 45-	/				WELL-GRADED SAND WITH CLAY AND GRAVEL	1						
-	+0-		3	\times	59	(SW-SC), very dense, brown, moist, medium to		 10					
-35 -	-		6"			coarse grained sand, subrounded gravel up to 1/2 inch		10					
ł	-	/ / ,					1						••••••
-						Continued			L	l	l		l
						CONTINUED							

BORING DEPTH: 150.5 ft DEPTH TO WATER: 14.4 ft., 7/21/05

START DATE: July 20, 2005 COMPLETION DATE: July 22, 2005 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Rope and Cathead

RIG TYPE: Failing 1500 DATE: July 20, 2005 ETION DATE: July 22, 2005 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-81

													Sheet 2 of
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Median of Stockton Ave., between Schiele Ave. and Villa Ave. N 1,949,237 E 6,151,102 SURFACE EL: 81.5 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
		////	4		10	SANDY LEAN CLAY (CL), stiff, no recovery at 50 ft							
30	- - 55-							•••••		•••••			Noise and Vibration Test
5								•••••					
20	60-												Noise and Vibration Tes
_	65-		5 30"		150 psi 150 psi	stiff, gray, moist, low to medium plasticity (pp=1.7/2.2/2.1 tsf, tv=0.65/0.7/0.75 tsf)			72	· · · · · · · ·		2.0 P 1.4 T	
5			6 30"		150 psi	very stiff, brown, low plasticity (pp=2.5/2.0/2.1 tsf, tv=0.4/0.5/0.6 tsf) (LEL=0.0, OVM=0.0, OXY=19.9)				•••••			Noise and
0	70-		7 0"		300 psi (23)	Ended drilling on 7/20/05 at 70 ft Began drilling on 7/21/05 at 70 ft CLAYEY SAND (SC), medium dense, no recovery						1.0 T	Vibration Tes
	75-					in MC sampler at 72.5 ft SANDY SILT (ML), very stiff, gray, moist, low plasticity		•••••		•••••			
	- 80-		8 30"		245 psi 245 psi	(pp=3.5/3.5/3.7 tsf, tv=0.65/0.62/0.67 tsf)				•••••			Noise and Vibration Tes
	-		9 24"		300 psi	SANDY LEAN CLAY (CL), hard, brown, moist, low to medium plasticity, trace fine gravel (pp=3.7/3.5/4.0 tsf, tv=0.65/0.7/0.75 tsf) refusal		•••••					
5	85-				400 psi	after 24 inches		•••••	70			3.8 P 1.4 T	
10	- 90-		10		(55)	WELL-GRADED SAND WITH GRAVEL (SW), very dense, brown, moist, subrounded gravel up to 1 inch (LEL=0.0, OVM=0.0, OXY=20.0)		•••••	· · · · · · · · · · · · · · · · · · ·	•••••			Noise and Vibration Tes
15	- - 95-		11 0"			CLAYEY SAND/ CLAYEY GRAVEL (SC/GC), no recovery, interbedded zone of clay and sand/ fine gravel (could not advance the sampler due to gravelly slough)	·····	••••••		······		••••••	
.5	-		12 15"		(39)	LEAN CLAY WITH SAND (CL), hard, light brown, moist, medium plasticity		25	82				

BORING DEPTH: 150.5 ft DEPTH TO WATER: 14.4 ft., 7/21/05

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Rope and Cathead RIG TYPE: Failing 1500

START DATE: July 20, 2005 COMPLETION DATE: July 22, 2005 NOTES: 1. Terms and symbols defined on Plate A-1.

DATE: July 20, 2005 ETION DATE: July 22, 2005 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-81

Silicon Valley Rapid Transit Project San Jose, California

Shoot 2 of 4

													Sheet 3 o
ION, ft	H, ft	RIAL	E NO. DV (in)	R TYPE	LER OUNT/ RE, psi	LOCATION: Median of Stockton Ave., between Schiele Ave. and Villa Ave. N 1,949,237 E 6,151,102	JNIT T, pcf	ER NT, %	SING		СІТҮ (%)	D SHEAR H, S., ksf	TESTS
ELEVATION,	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO.	SAMPLER TYPI	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 81.5 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED (STRENGTH,	OTHER TESTS
				2 00		MATERIAL DESCRIPTION						З ^Б	
20		////	1			WELL-GRADED SAND (SW), dense, brown, moist,	-						Noise and Vibration Tes
	•		13 13"		(55)				• • • • • • •		• • • • • • •		
	105-		13"			LEAN CLAY (CL), hard, brown to gray, moist, medium plasticity, trace fine gravel							
25													
			14 14"		(47)	light brown (LEL=0.0, OVM=0.0, OXY=21.0)							
	110-					Ended drilling on 7/21/05 at 109 ft							Noise and
30						Began drilling on 7/22/05 at 109 ft							
	•		15 16"		(50)	brown, trace coarse grained sand							•••••
													••••••
	115-		1										
35			16		(50/6")	POORLY GRADED SAND WITH GRAVEL (SP), very dense, brown, moist, subrounded gravel up to			3				
	•		5"		(30/0)	1 inch					• • • • • • •		
	120-												Noise and Vibration Te
40	•												••••••
			17		(68)	SANDY SILT TO SILTY SAND (ML/SM), hard,							
	125-		14			gray, moist, low plasticity (LEL=0.0, OVM=0.0, OXY=20.9)		16	45				
45						POORLY GRADED SAND WITH GRAVEL (SP),							
		777	1 18		(48)	sand and gravel from cuttings	1						
	130-		18 15"		(10)	SANDY LEAN CLAY (CL), hard, gray, moist, medium plasticity		20	69				
50						LEAN CLAY (CL), very stiff, gray, moist, medium							
						plasticity							
	135-	///	19 30"		300 psi								
55		///			400 psi	(pp=3.0/2.7/3.0 tsf, tv=0.9/0.9/0.95 tsf)						2.9 P 1.8 T	
		///										1.8 1	
	140	///	20 30"		300 psi								
60	140-	///		Į.		light brown (pp=3.5/3.5/3.0 tsf, tv=0.7/0.8/0.9 tsf)		22	0.0			360	
50		///			400 psi	· · · ·		33	. 98			3.5 <u>P</u> ··· 1.6 T···	
		///	21	μη	300 psi								
	145-		21 30"			low to modium plasticity (nn-2 5/2 0/2 5 tof							
65		///		111	350 psi	low to medium plasticity (pp=3.5/3.0/3.5 tsf, tv=0.8/0.9/0.9 tsf) (LEL=0.0, OVM=0.0, OXY=20.8)						3.5 P 1.8 T	
						,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,							
			22		400 psi]						

Continued

BORING DEPTH: 150.5 ft DEPTH TO WATER: 14.4 ft., 7/21/05 DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Rope and Cathead RIG TYPE: Failing 1500

START DATE: July 20, 2005 COMPLETION DATE: July 22, 2005 NOTES: 1. Terms and symbols defined on Plate A-1.

DATE: July 20, 2005 ETION DATE: July 22, 2005 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-81

Silicon Valley Rapid Transit Project San Jose, California

TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08 09:47 a SVRT BORING LOG 011108 Z:\TUGENERAL\USERS\UAIN_A\GINT\SVRT_PHASE 2_050208.GPJ

Project No.	213213	

Ľ		0. (in)	ΡE	T/ osi	LOCATION: Median of Stockton Ave., between Schiele Ave. and Villa Ave. N 1,949,237 E 6,151,102	í	%	(0.11)			IEAR , ksf	Sheet 4 of ഗ
ELEVALIUN, π DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 81.5 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, 9	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
	2	REC	SAN	PRE	MATERIAL DESCRIPTION	≥	8 V	8#		= =	STRE	ΤΟ
				400 psi	CLAYEY SAND WITH GRAVEL (SC), dense,						_⊃‴	
0				400 p3i	brown, moist, fine to medium grained sand, subrounded gravel up to 1/2 inch							
- 155-												
5												
-												
160-												
0 -												
-										[
165- - 5												
- 170-												
0												
-												
175- - 5												
- 180-												
00												
-					20							
185-												
05												
- 190-												
190-					2							
-			X									
- 195-												
15												•••••
-												

DEPTH TO WATER: 14.4 ft., 7/21/05

START DATE: July 20, 2005 COMPLETION DATE: July 22, 2005 NOTES: 1. Terms and symbols defined on Plate A-1.

HAMMER TYPE: Rope and Cathead

RIG TYPE: Failing 1500 DATE: July 20, 2005 ETION DATE: July 22, 2005 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-81

Project No.	213213	

I, ft	±.,	_1	.j	/PE	NT/ psi	LOCATION: Approx. 150 feet NW of Las Plumas Ave., 30 feet NE of UPRR tracks N 1,956,149 E 6,163,187	പ്	%	ωш		≻~	SHEAR , S _u , ksf	TS
ELEVATION,	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO	SAMPLER TYPE	SAMPLER DW COUNT/ ESSURE, psi	SURFACE EL: 85.9 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICIT INDEX (%)	E S S	OTHER TESTS
EVA7	DEPI	IATE SYM	SAMPLE	IPLE	SSL SSL		지지	WA	PAS 200	IN IN	LASTI	UNDRAINED (STRENGTH,	市民
Ш		≥"	SA	SAN	BLO PRE		S⊓	8	%#		물론	TRE	Ε
						MATERIAL DESCRIPTION						5°	
85	-					SILT (ML), stiff, light brown, moist, low plasticity							
	-		1 10"		(17)								
	5-		2	69	180 psi	LEAN CLAY (CL), stiff, gray, moist, low plasticity							
80	-		24"			(pp=1/1.5/1.25 tsf, tv=0.4,0.5,0.45 tsf)							
	-		1	Ν		Denor reterior to a dia the a dia the						1.3 P ··0.9 T··	
	-	\square	4			Began rotary wash, set casing to 8 1/2 ft LEAN CLAY (CL), stiff, brown, moist, medium	-						
75	10-		3 32"		150 psi	plasticity (pp=1.25/1.5/1.25 tsf, tv=0.6/0.65/0.6 tsf)							
	-					(OVM=0 ppm, OXY=20.9%, CH4=2 ppm)						1.3 P 1.2 T	
	-											1.2 T	
	15-		4		250 psi								
70	-		32"			yellowish brown (pp=1.75/1.5/1.75 tsf, tv=0.75/0.8/0.75 tsf)				• • • • • • • •		• • • • • • • • • • •	
	-		2	111								1.7 P 1.5 T	•••••
	- 20-		1		100 .	0.							
65	20		5 28"		180 psi	brown (pp=1.5/1.75/1.5 tsf, tv=0.65/0.7/0.65 tsf)							
	-		7	Ш			96	28	98		18	1.6 P 1.3 T	···Hydrometer te
	-		1									1.3 I	
60	25-		6 33"	ΗĮ	125 psi								
00	-					medium (pp=0.5/0.75/0.5 tsf, tv=0.35/0.45/0.4 tsf)						0.6 P 0.9 T	
	-		1	1:1:1									
	- 30-		1,		100 psi	6.03							
55	-		7 33"		100 pai	(pp=0.5/0.75/0.5 tsf, tv=0.35/0.4/0.35 tsf)							
	-			<u>iii</u>				27				0.6 P 0.7 T	
	-												
50	35-		8		180 psi	stiff, dark brown (pp=1.5/1.5/1.0 tsf,							
	-					tv=0.55/0.7/0.6 tsf)						130	
	-	$\langle / /$	4			LEAN CLAY WITH SAND (CL), stiff, light brown,						. 1.3 ₽ . 1.2 T · ·	••••••
	40-		9	сıй	180 psi	moist to wet, low plasticity (pp=1.5/1.0/0.75 tsf,							
45	-		30"		i de poi	tv=0.25/0.3/0.33 tsf) (OVM=0 ppm, OXY=20.9%,							
	-		1	kith M		CH4=2 ppm)		26	72	35	18	1.1 P 0.6 T	Hydrometer te
	-	ÁÍ	T			SILTY CLAY (CL-ML), stiff, grayish brown, moist	1						•••••
40	45-		10		(16)								
	-												
	-		Ц							•••••			
						SANDY SILT (ML), stiff, light gray, moist, low Continued	L	l	L	l		L	l
		DEPT			ft ot Measu	D	RILLIN AMME	IG ME	THOD	: 5-in. (dia. Ro	otary Wa	sh

START DATE: June 18, 2007 COMPLETION DATE: June 18, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

 LL. INCL CENTER GROUT
 RIG TYPE: Failing 1500

 DATE: June 18, 2007
 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich

 ETION DATE: June 18, 2007
 LOGGED BY: R. Vedantham

 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang

 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

 design purposes. For applicable groundwater information, places affects places affects places affects and the second structure.

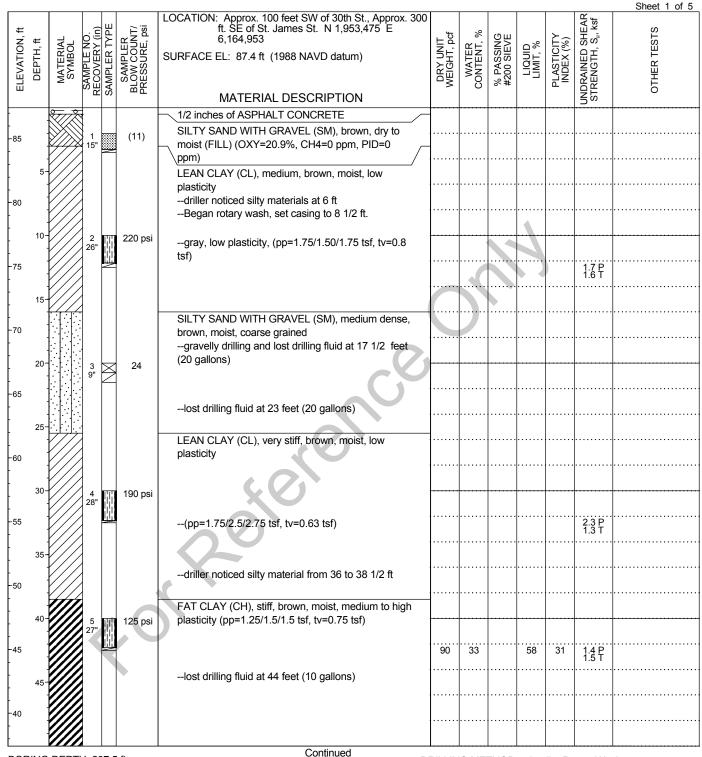
 design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-82

Project No. 213213

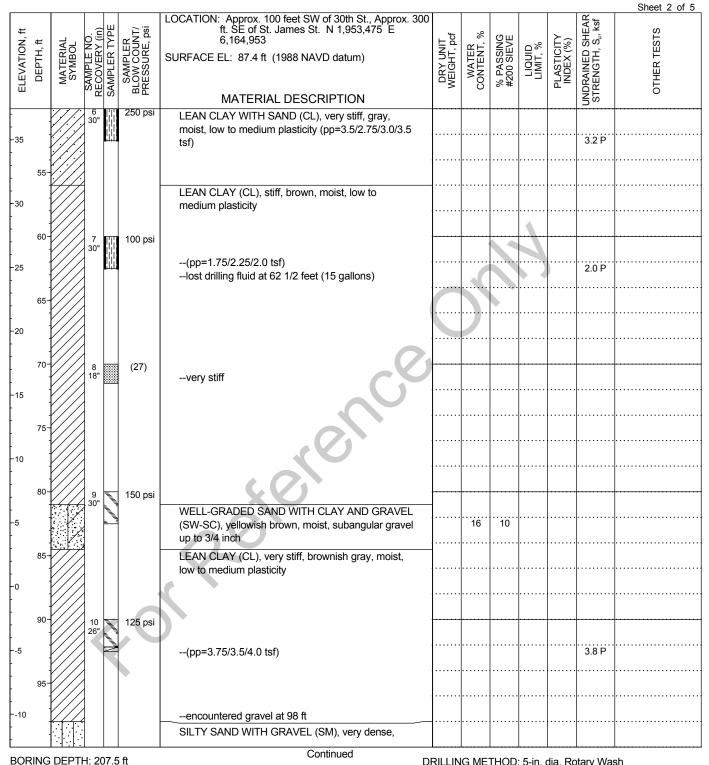
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOI	N BR	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 150 feet NW of Las Plumas Ave., 30 feet NE of UPRR tracks N 1,956,149 E 6,163,187 SURFACE EL: 85.9 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	Sheet 2 of 2 SL SL SL SL SL SL SL SL SL SL SL SL SL
-35			11		(15)	plasticity		24					
- - -30 -	- - 55- -		12 16"	X	12								
- - -25 -	-60 -		13 18"	X	24	SILTY CLAY (CL-ML), very stiff, brown, moist, low plasticity	· · · · · · · · · · · · · · · · · · ·				·····		
-20	- 65 - -		14 36"		200 psi	SILT (ML), very stiff, gray, moist (pp=3.5/4.0/3.75 tsf)	94	27			9	 	Hydrometer test
- - -15 -	-70 - -		15 33"		200 psi	SILTY SAND (SM) LEAN CLAY (CL), very stiff, gray, moist, low plasticity (pp=3.75/3.5/3.25 tsf)						3.5 P	
- - -10 -	- 75-									•••••			
- 5 -	-80 -		16 16"	Ш Д	225 psi	SILTY SAND (SM), dark brown, wet, fine to medium grained				•••••			
- - -0 -	85-					, Co							
- 	-90 - -		17 33"		250 psi	LEAN CLAY WITH SAND (CL), very stiff, yellowish brown, moist, low plasticity (pp=2.5/2.25/2.0 tsf) (OVM=0 ppm, OXY=20.9%, CH4=1 ppm)	110	21				2.3 P	
10 - -	95-												
DEP BAC STAI	TH 1 KFIL RT [TO W. _L: N DATE:	eat Ce : June	: No eme e 18	t ot Measu nt Grout , 2007 June 18, 2	red H, RI DI	amme Ig tyf Rille	R TYP E: Fa	E: Au Ailing 19 Pitche	tomati 500 er Drillii	c Trip ng, L. \	otary Was Willard/J.	

 START DATE: June 18, 2007
 DRILLED BY: Pitcher Drilling, L. Willard/J. Must COMPLETION DATE: June 18, 2007


 NOTES: 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang

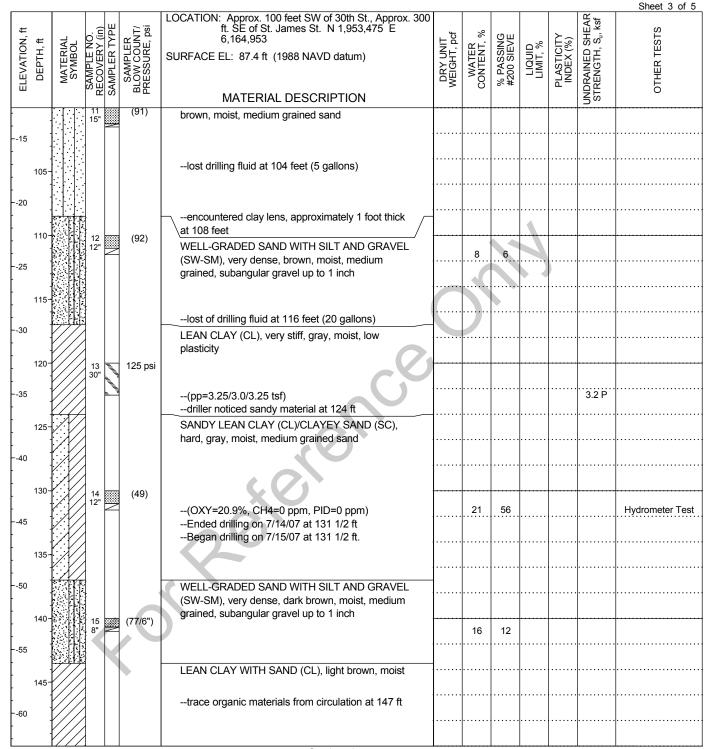
 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-82


BORING DEPTH: 207.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 14, 2007 COMPLETION DATE: July 16, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, W. Baker/L. Willard/J. Musich LOGGED BY: G. Tripathi CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-84


BORING DEPTH: 207.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 14, 2007 COMPLETION DATE: July 16, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILED BY: Pitcher Drilling, W. Baker/L. Willard/J. Musich LOGGED BY: G. Tripathi CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-84

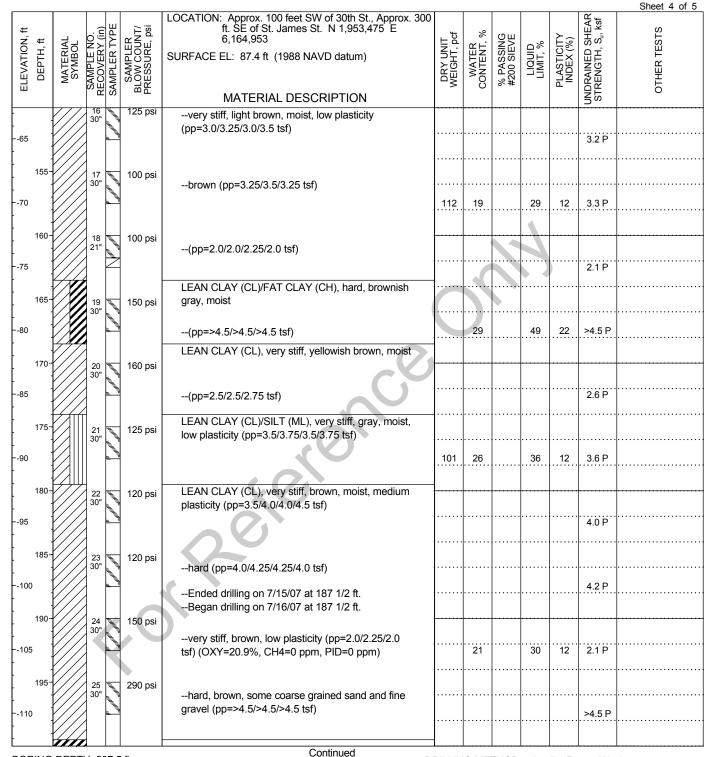
Continued

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, W. Baker/L. Willard/J. Musich LOGGED BY: G. Tripathi CHECKED BY: F. Wang

NOTES: 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

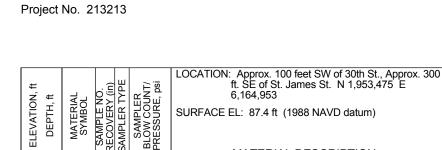
BORING DEPTH: 207.5 ft

DEPTH TO WATER: Not Measured


COMPLETION DATE: July 16, 2007

BACKFILL: Neat Cement Grout START DATE: July 14, 2007

LOG OF BORING NO. BH-84


BORING DEPTH: 207.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 14, 2007 COMPLETION DATE: July 16, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, W. Baker/L. Willard/J. Musich LOGGED BY: G. Tripathi CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

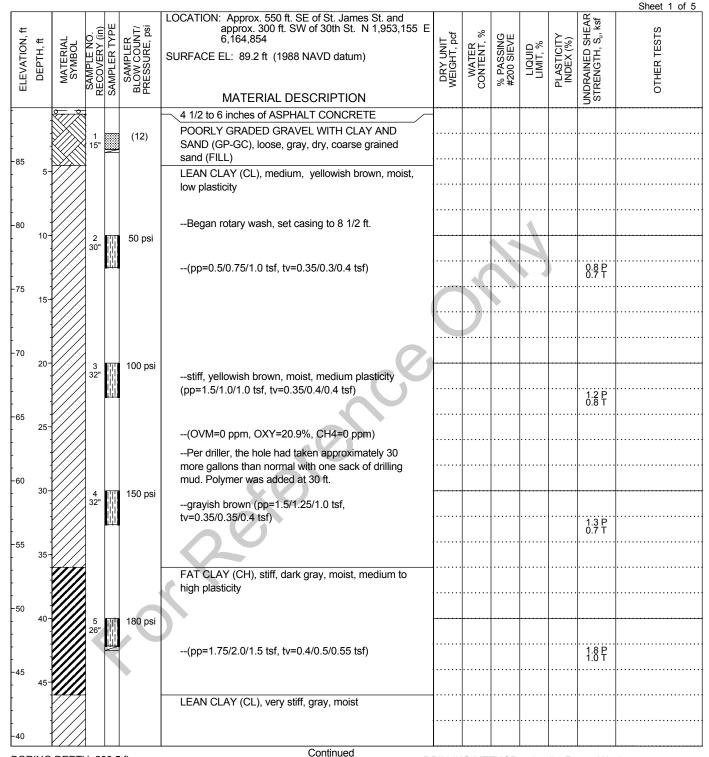
LOG OF BORING NO. BH-84

ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in) SAMDI ED TVDE		SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 100 feet SW of 30th St., Approx. 300 ft. SE of St. James St. N 1,953,475 E 6,164,953 SURFACE EL: 87.4 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
			n		MATERIAL DESCRIPTION						ND	
-	<i>\\\\</i>	26 15"		(87)	FAT CLAY (CH), hard, brown, moist, medium to							
- 115	{////				high plasticity		••••••					
-	<i>\///</i>											
- 205	¥////	27 -		190 psi								
[<i>\\\\</i>	27 = 31" =		190 hei	very stiff, trace gravel (pp=3.5/3.25/3.5/3.5 tsf)							
120	¥////						22		57	32	3.4 P	
ŀ]											
210	-						·····					
ŀ	1											
125	1)		
[-											
215	;-											
-]								••••			
130 -	-											
-	-				0							
220	1											
- 135	-											
- 135	1											
- 225	1								• • • • • • • •			
[-											
140	1											
ŀ]											
230	-						.				 	
ŀ	1											
145]											
[-											
235	i-											
1.55]											
150 -	-			4								
-												
240	7											
- 155	-											
-	1											
- 245	1											
[-											
160	1											
ŀ	1								• • • • • • • •			
<u> </u>						I	I	l	L	l	l	I
BORINO DEPTH					red D	RILLIN AMME	IG ME R TYP	THOD: E: Au	: 5-in. (tomati	dia. Ro c Trip	otary Wa	sh

BACKFILL: Neat Cement Grout START DATE: July 14, 2007 COMPLETION DATE: July 16, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

RIG TYPE: Failing 1500 DATE: July 14, 2007 ETION DATE: July 16, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

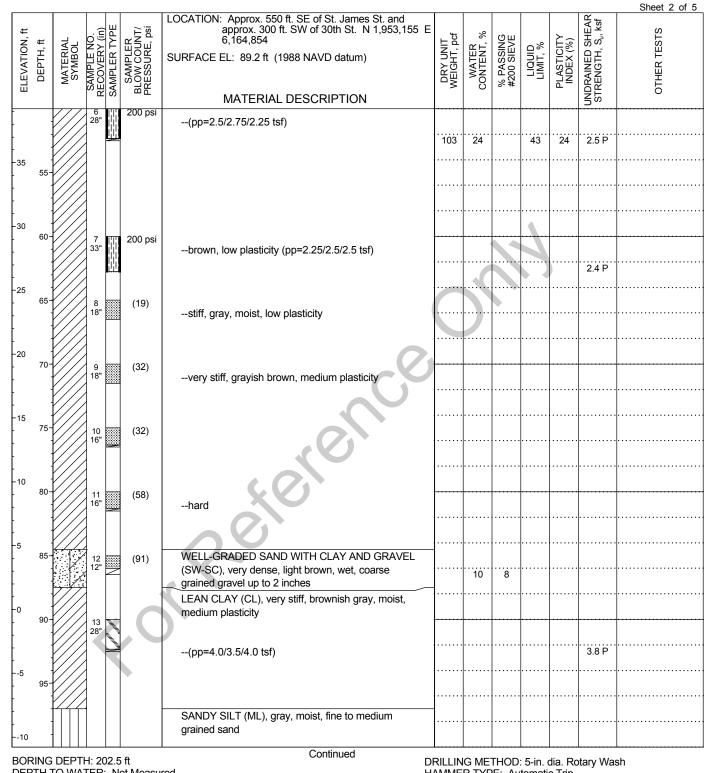


LOG OF BORING NO. BH-84

Silicon Valley Rapid Transit Project San Jose, California

Sheet 5 of 5

BORING DEPTH: 202.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 8, 2007 COMPLETION DATE: July 10, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.


DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-85

BORING DEPTH: 202.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 8, 2007 COMPLETION DATE: July 10, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

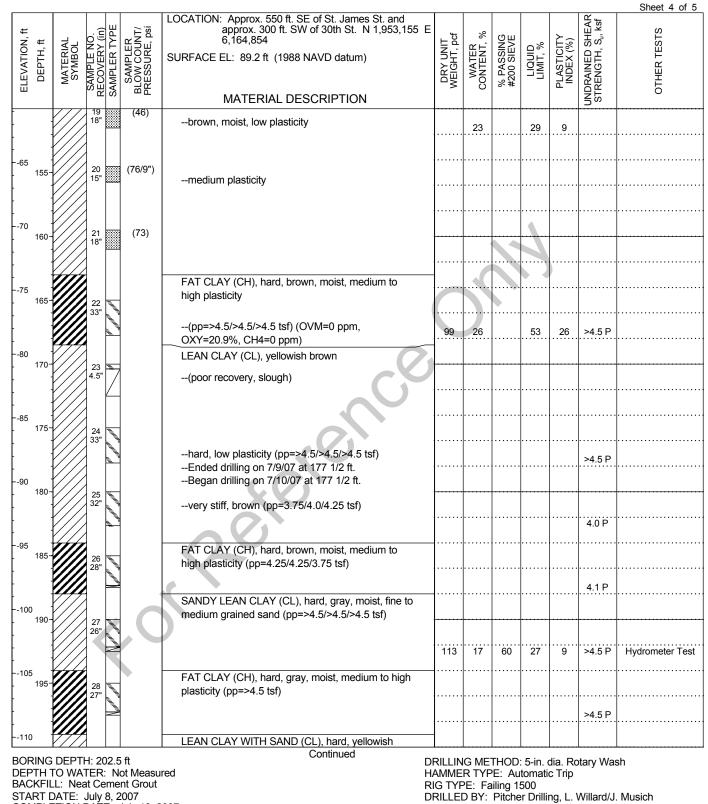
LOG OF BORING NO. BH-85

	1							Sheet 3 of 5
N, ft AL UNT Psi Psi	LOCATION: Approx. 550 ft. SE of St. James St. and approx. 300 ft. SW of 30th St. N 1,953,155 E 6,164,854	pcf	, %	NG VG	0%	¥.(%	SHEAR S _u , ksf	STS
ELEVATION, ft DEPTH, ft MATERIAL SYMBOL SAMPLE NO. RECOVERY (in) SAMPLER TYPE SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 89.2 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED (STRENGTH,	OTHER TESTS
ELE SAMM SAMM SAMM SAMM SAMM SAMM SAMM SAM	MATERIAL DESCRIPTION	^D M	6	*#		24	UNDR/ STRE	011
	(OVM=1.2 ppm, OXY=20.9%, CH4=0 ppm)	104	20	59	• • • • • • • • •			Hydrometer Test
-15 105-	SILTY GRAVEL WITH SAND (GM), very dense, brown, wet, coarse grained gravel up to 1 1/2 inches				• • • • • • • • •			
20 110- 15 15" (109)	Ended drilling on 7/8/07 at 111 1/2 ft. Began drilling on 7/9/07 at 109 ft (Hole caved in		••••••					
	about 2 1/2 feet) Additional drilling mud (1/4 sack) and 10 gallons of							
25	water was added.							
					• • • • • • • • •			
-30	POORLY-GRADED SAND WITH CLAY AND GRAVEL (SP-SC), very dense, brown, wet, dense,							
120-116 (81)	coarse grained	·····		+•••••		+		
			11	8				
-35								
	SO.							
-40	SANDY LEAN CLAY (CL), hard, gray, moist, medium plasticity							
130- 18" (53)								
-45	$\sim 0^{\circ}$							
135-								
-50			•••••					
140 18 (74)								
55								
60								
BORING DEPTH: 202.5 ft	Continued D	RILLIN	IG ME	THOD	: 5-in.	dia. Ro	otary Wa	sh
DEPTH TO WATER: Not Measu BACKFILL: Neat Cement Grout	ired H	AMME	R TYF E: Fa	PE: Au	itomati		-	
START DATE: July 8. 2007	D	RILLF	D BY	Pitche	er Drilli	na. L	Willard/.I	Musich

COMPLETION DATE: July 10, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

LOGGED BY: R. Vedantham

 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang

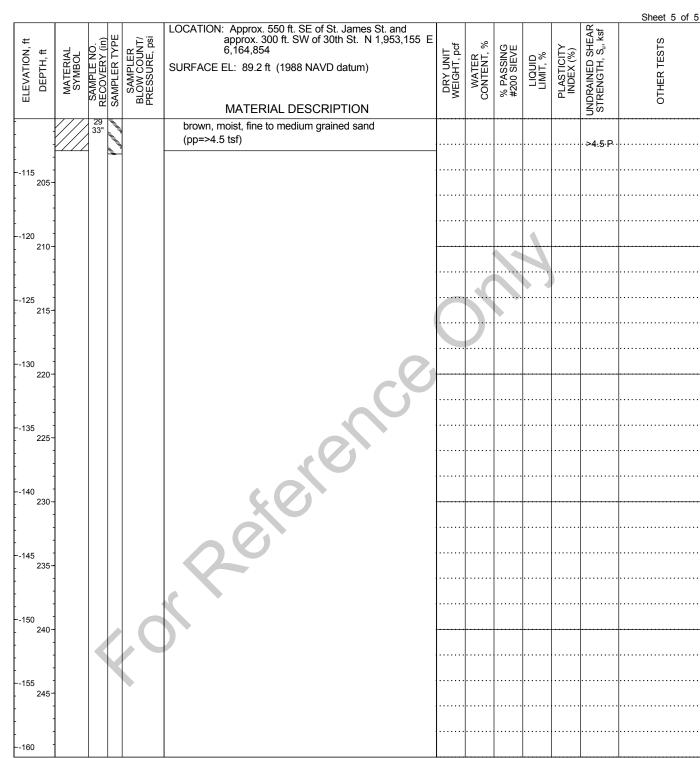

 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

 design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-85

COMPLETION DATE: July 10, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

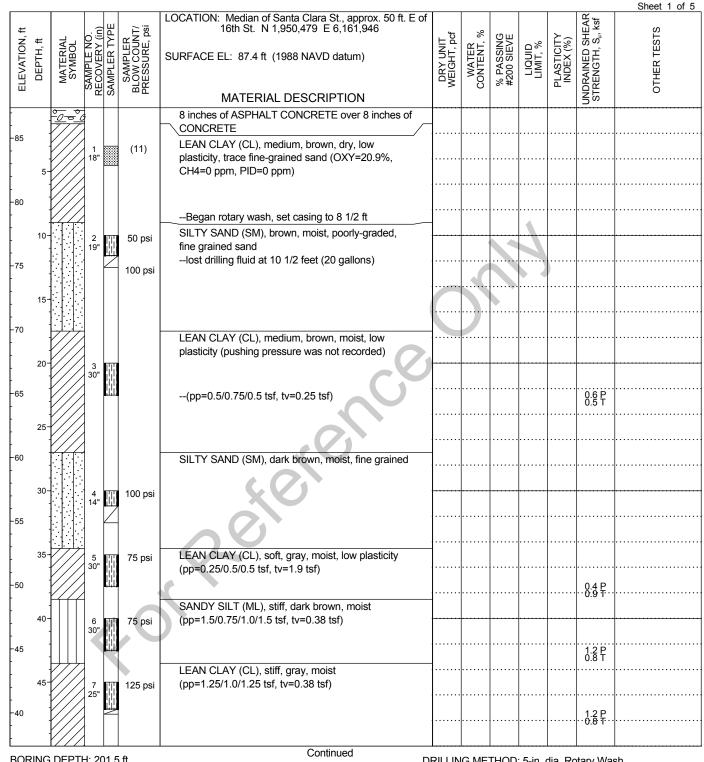


LOG OF BORING NO. BH-85

Silicon Valley Rapid Transit Project San Jose, California

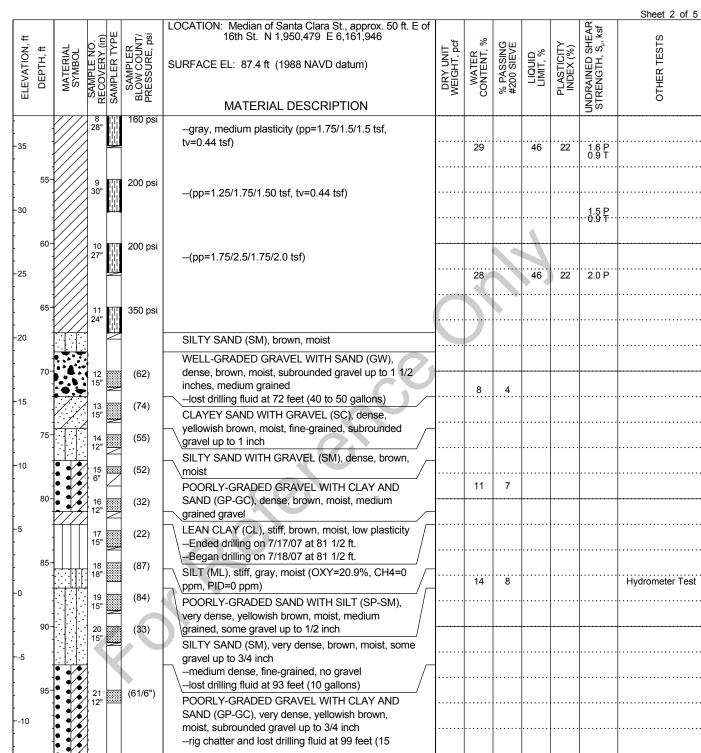
TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08 09:47 a SVRT BORING LOG 011108 Z:/TUGENERAL/USERSUAIN_A/GINT/SVRT_PHASE 2_050208.GPJ

BORING DEPTH: 202.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 8, 2007 COMPLETION DATE: July 10, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.


DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-85


BORING DEPTH: 201.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 17, 2007 COMPLETION DATE: July 20, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: F. Wang/G. Tripathi CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-87

Continued

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: F. Wang/G. Tripathi CHECKED BY: F. Wang

NOTES: 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

BORING DEPTH: 201.5 ft

DEPTH TO WATER: Not Measured

COMPLETION DATE: July 20, 2007

BACKFILL: Neat Cement Grout START DATE: July 17, 2007

LOG OF BORING NO. BH-87

1									1		~	Sheet 3 of
EPTH, ft	ATERIAL YMBOL		PLER TYPE	AMPLER W COUNT/ SSURE, psi	LOCATION: Median of Santa Clara St., approx. 50 ft. E of 16th St. N 1,950,479 E 6,161,946 SURFACE EL: 87.4 ft (1988 NAVD datum)	RY UNIT IGHT, pơf	VATER NTENT, %	PASSING	-IQUID IMIT, %	ASTICITY DEX (%)	INED SHEAF IGTH, S _u , ksf	OTHER TESTS
	ξø	RECC	SAMF	S/ PRE		¹⁰ N	> <u>0</u>	#2(ΞZ	TREN	ОТН
											Ξώ	
		11.25		()	SILTY SAND WITH GRAVEL (SM), dense,							
05-		23	HH	240 psi	LEAN CLAY (CL), very stiff, yellowish brown, moist, low plasticity							
		50			(pp=2.5/3.0/3.25/3.0 tsf)						2.9 P	
10-		24		200 psi								••••••
		50			(pp=2.5/2.75/2.5 tst)						2.6 P	
15-		25	HH	350 psi	SILTY SAND (SM), brownish gray, moist							
. . .												
20-		26		(108)	lost drilling fluid at 119 feet (10 gallons) WELL-GRADED SAND WITH SILT AND GRAVEL							
والمراجع					subangular gravel up to 1 inch, medium grained		8	6				
25-		27 15"		(102)								
			N		SILTY CLAY (CL-ML), hard, brown, moist, low							
30-		28 30"		250 psi								
					(pp=3.5/4.0/4.0/4.25 tsf) Ended drilling on 7/18/07 at 132 1/2 ft.						3.9 P	
35-		29 19"		450 psi	Began drilling on 7/19/07 at 132 1/2 ft. CLAYEY GRAVEL WITH SAND (GC), light gray,							
				4			9	. 13				Hydrometer Te
40-		30 15"		(98)	fine-grained sand, subrounded gravel up to 1 inch,							
. . .					(OXY=20.9%, CH4=0 ppm, PID=0 ppm)							
45		31 18"		(47)	SILT (ML), hard, light brown, moist, low plasticity							••••••
-												
			Industry Industry Industry I	05 22 10 23° 10 24° 10 24° 15 25° 20 26° 20 26° 30° 26° 30° 26° 30° 26° 30° 26° 30° 26° 30° 26° 30° 26° 30° 27° 30° 28° 30° 29° 40° 15° 40° 31°	11-1 22-2 (53) 005 230 240 psi 10 24 200 psi 10 24 200 psi 10 26 115 20 26 115 20 26 115 30 25 250 psi 30 28 250 psi 30 28 250 psi 30 29 450 psi 40 15 30 40 15 450 psi 40 15 450 psi	128 (53)	16th St. N 1,950,479 E 6,161,946 17 17 17 17 18 19 10 11 11 11 12 12 130 14 15 16 16 16 17 18 19 19 10 10 10 10 11 11 12 12 130 140 15 15 16	Product Product <t< td=""><td>H H</td><td>16th St. N 1,950,479 E 6,161,946 16th St. N 1,950,479 E 6,161,946 1000000000000000000000000000000000000</td><td>Hundred Burger</td><td>International and the start of the start start of the start start</td></t<>	H H	16th St. N 1,950,479 E 6,161,946 16th St. N 1,950,479 E 6,161,946 1000000000000000000000000000000000000	Hundred Burger	International and the start of the start start of the start

Continued

BORING DEPTH: 201.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 17, 2007 COMPLETION DATE: July 20, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip

LL: Neat Cement Grout DATE: July 17, 2007 ETION DATE: July 20, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-87

Silicon Valley Rapid Transit Project San Jose, California

SVRT BORING LOG 011108 Z: TUGENERAL USERSUAIN_AIGINTSVRT_PHASE 2_050208.GPJ TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08 09:48 a

E U											1		1	Sheet 4 of 5
-65 30 375 pai very stiff, brown (pp=3.25/3.0/3.25/3.5 tsf) 3.3 P -65 33 250 pai SILTY SAND (SM), dense, yellowish brown, moist, fine-grained 92 18 24 Hydrometer Te 165 32 32 SILTY SAND WITH GRAVEL (SM), very dense, yellowish brown, moist, fine-grained, subrounded gravel up to 2 inches 92 18 24 Hydrometer Te 160 32 32 REF/57 SILTY SAND WITH GRAVEL (SM), very dense, yellowish brown, moist, medium-grained, subrounded gravel up to 2 inches 92 18 24 Hydrometer Te 165 33 9 G62/67 SAND (GP-GN), very dense, yellowish brown, moist, gravel up to 1 inch (OXY=20.9%, CH4=0 ppm, PID=0 ppm) coarse-grained, subrounded gravel added cement (Type II-V) POORLY-GRADED SAND WITH SILT AND GRAVEL WITH SILT AND GRAVEL (SPSM), velyowish brown, moist, coarse-grained, subrounded gravel added cement (Type II-V) POORLY-GRADED SAND WITH SILT AND GRAVEL WITH SILT AND GRAVEL (SPSM), velyowish brown, moist, coarse-grained, subrounded gravel added cement (Type II-V) POORLY-GRADED SAND WITH SILT AND GRAVEL (SPSM), velyowish brown, moist, coarse-grained, subrounded and subangular gravel up to 1 inch added cement (Type II-V) POORLY-GRADED SAND WITH SILT AND GRAVEL (SPSM), velyowish brown, moist, coarse-grained, subrounded	ATION, ft	чтн, ft	ERIAL ABOL	LE NO. 'ERY (in)	ER TYPE	IPLER COUNT/ URE, psi		' UNIT BHT, pcf	NTER TENT, %	SSING	QUID IIT, %	ТІСІТҮ ЕХ (%)	IED SHEAR STH, S _u , ksf	R TESTS
very stiff, brown (pp=3.25/3.013.25/3.5 tsf) 3.3 P very stiff, brown (pp=3.25/3.013.25/3.5 tsf) 3.3 P -70 very stiff, brown (pp=3.25/3.013.25/3.5 tsf) 3.3 P -70 very stiff, brown (pp=3.25/3.013.25/3.5 tsf) 3.3 P -70 very stiff, brown (pp=3.25/3.013.25/3.5 tsf) very stiff, brown, moist, medum-grained, subrounded gravel up to 2 inches -75 very stiff, brown, moist, medum-grained, subrounded gravel up to 2 inches very stiff, brown, moist, moist, moist, moist, moist, moist, moist, moist, moist, gravel up to 1 inch -80 very stiff, brown, moist, medum-grained, subrounded gravel up to 1 inch very stiff, brown, moist, moist, moist, moist, gravel up to 1 inch -80 very stiff, brown, moist, gravel up to 1 inch (OXY=2.0.9%, CH4=0) very stiff, brown, moist, gravel up to 1 inch -90 very stiff, brown, moist, gravel up to 1 inch (OXY=2.0.9%, CH4=0) very stiff, brown, moist, gravel up to 1 inch -91 very stiff, brown, moist, gravel up to 1 inch very stiff, brown, moist, gravel up to 1 inch -93 very stiff, brown, moist, gravel up to 1 inch added cement (Type II-V) -94 very stiff, brown, moist, gravel up to 1 inch added cement (Type II-V) -95 very stiff, brown,	ELEV	DEF	MAT		SAMPL		MATERIAL DESCRIPTION	DRY	CONT	% PA #200		PLAS	UNDRAIN	ОТНЕР
185 33 250 psi SiLTY SAND (SM), dense, yellowish brown, moist, fine-grained 92 16 24 Hydrometer Te 180 34 III (REFA7) SiLTY SAND WITH GRAVEL (SM), very dense, yellowish brown, moist, medium-grained, subrounded gravel up to 2 inches 92 16 24 Hydrometer Te -75 185 35 III (REFA7) SiLTY SAND WITH GRAVEL (SM), very dense, yellowish brown, moist, medium-grained, subrounded gravel up to 2 inches	65	-		30"		s75 psi	very stiff, brown (pp=3.25/3.0/3.25/3.5 tsf)						33P	
-70 12 12 Ine-grained 32 16 24 Hydrometer Te 180 12 IREF/57 SILTY SAND WITH GRAVEL (SM), very dense, yellowish brown, moist, medium-grained, subrounded gravel up to 2 inches	-	-												
160 14 14 Image: Siling Si	-	155-		33 12"	111111	250 psi								
-75 -75 -75 -75 -75 -75 -75 -05 -051 dnilling fluid at 163 feet (15 gallons) -80 -054 dnilling fluid at 163 feet (15 gallons) ocarse-grained, subrounded gravel up to 1 inch -80 -062 -062 -062 170- -105 -062 -062 170- -105 -062 -062 170- -105 -062 -062 170- -105 -062 -062 170- -105 -062 -062 170- -105 -062 -062 170- -102 -062 -062 170- -102 -062 -062 175- -102 -062 -079/07 -071/16	70	-		:	Н			. 92	16					Hydrometer Test
-75 165 15 165 16 15 lost drilling fluid at 163 feet (15 gallons) -80 170 35 (62/6°) coarse-grained, subrounded gravel up to 1 inch -80 170 36 (62/6°) POORLY-GRADED GRAVEL WITH SILT AND SAND (GP-GM), very dense, yellowish brown, moist, gravel up to 1 inch (OXY=20.9%, CH4=0) -85 175 37 (62/6°) SAND (GP-GM), very dense, yellowish brown, moist, gravel up to 1 inch (OXY=20.9%, CH4=0) -96 175 37 (56/6°) fine-grained, some subrounded gravel -98 180 38 (56/6°) POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), yellowish brown, moist, coarse-grained, subrounded and subangular gravel up to 1 inch 9 6 180 180 12 (50) ELASTIC SILT (MH)/FAT CLAY (CH), very stiff, brown, moist, high plasticity (pp=3.5/3.25/3.5 tsf) 35 56 25 3.4 P -105 195 195 (50) LEAN CLAY (CL), very stiff (No Recovery, Classification per driller) 35 56 25 3.4 P	-	- 160- -		34 12"		(REF/5")	yellowish brown, moist, medium-grained,				1			
-coarse-grained, subrounded gravel up to 1 inch -coarse-grained, subrounded gravel up to 1 inch (SCN=20.9%, CH4=0 ppm, PID=0 ppm) -Ended drilling on 7/19/07 at 171 ft. -added cement (Type II-V) POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), yellowish brown, moist, gravel up to 1 inch (OXY=20.9%, CH4=0 ppm, PID=0 ppm) -Ended drilling on 7/19/07 at 171 ft. -added cement (Type II-V) POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), yellowish brown, moist, coarse-grained, subrounded gravel -added cement (Type II-V) POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), yellowish brown, moist, coarse-grained, subrounded and subangular gravel up to 1 inch ELASTIC SILT (MH)/FAT CLAY (CH), very stiff, brown, moist, high plasticity (pp=3.5/3.25/3.51sf) 185 185 185 185 185 185 185 185	75 -	-)		
170 36 172 (62/6") POORLY-GRADED GRAVEL WITH SILT AND SAND (CP-GM), very dense, yellowish brown, moist, gravel up to 1 inch (OXY=20.9%, CH4=0 ppm, PID=0 ppm)	-	-165 -				(REF/6")	coarse-grained, subrounded gravel up to 1 inch							
170 38 (62/6") SAND (GP-GM), very dense, yellowish brown, moist, gravel up to 1 inch (OXY=20.9%, CH4=0 ppm, PID=0 ppm) 175 37 (108/11") -Ended drilling on 7/19/07 at 171 ft. -90 -added cement (Type II-V) -added cement (Type II-V) POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), vellowish brown, moist, coarse-grained, subrounded and subangular gravel up to 1 inch 9 -95 -addet cement (Type II-V) POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), vellowish brown, moist, coarse-grained, subrounded and subangular gravel up to 1 inch 9 -100 180 -400 psi ELASTIC SILT (MH)/FAT CLAY (CH), very stiff, brown, moist, figh plasticity (pp=3.5/3.25/3.5 tsf) 35 -100 400 psi LEAN CLAY (CL), very stiff (No Recovery, Classification per driller) 35 56 25 3.4 P	80	-												
175 37 12" 108/11") Ended drilling on 7/19/07 at 171 ft. Began drilling on 7/20/07 at 171 ft. fine-grained, some subrounded gravel -90 180 38 12" (56/6") added cement (Type II-V) POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), yellowish brown, moist, coarse-grained, subrounded and subangular gravel up to 1 inch 9 6 180 12" (56/6") ELASTIC SILT (MH)/FAT CLAY (CH), very stiff, brown, moist, high plasticity (pp=3.5/3.25/3.5 tsf) 9 6 180 400 psi 190 400 psi 0" ELASTIC SILT (MH)/FAT CLAY (CH), very stiff, brown, moist, high plasticity (pp=3.5/3.25/3.5 tsf) 35 56 25 3.4 P 190 0" (50) LEAN CLAY (CL), very stiff (No Recovery, Classification per driller) 35 56 25 3.4 P	-	170-		36 12"		(62/6")	SAND (GP-GM), very dense, yellowish brown,							
175 37 (108/11") fine-grained, some subrounded gravel added cement (Type II-V) added cement (Type II-V) POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), yellowish brown, moist, coarse-grained, subrounded and subangular gravel up to 1 inch 9 6 95 100	85 -	-					Ended drilling on 7/19/07 at 171 ft.							
180 180 12" (56/6") POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), yellowish brown, moist, coarse-grained, subrounded and subangular gravel up to 1 inch 9 6 Hydrometer Te 185 185 185 10" 400 psi ELASTIC SILT (MH)/FAT CLAY (CH), very stiff, brown, moist, high plasticity (pp=3.5/3.25/3.5 tsf) 9 6 Hydrometer Te 190 40 psi ELASTIC SILT (MH)/FAT CLAY (CH), very stiff, brown, moist, high plasticity (pp=3.5/3.25/3.5 tsf) 35 56 25 3.4 P 190 40 psi LEAN CLAY (CL), very stiff (No Recovery, Classification per driller) 35 56 25 3.4 P	-	175-		37 12"		(108/11")								
180- 38 (56/6") GRAVEL (SP-SM), yellowish brown, moist, coarse-grained, subrounded and subangular gravel up to 1 inch 9 6 Hydrometer Te 95 185- 185- 400 psi ELASTIC SILT (MH)/FAT CLAY (CH), very stiff, brown, moist, high plasticity (pp=3.5/3.25/3.5 tsf) 9 6 Hydrometer Te 190- 40 0" (50) LEAN CLAY (CL), very stiff (No Recovery, Classification per driller) 35 56 25 3.4 P	90	-		-										
-95 185 -100 190 -105 195 195 12" 12" 12" 12" 12" 12" 12" 12"	-	- 180-				(56/6")								
185 39 100 psi ELASTIC SILT (MH)/FAT CLAY (CH), very stiff, brown, moist, high plasticity (pp=3.5/3.25/3.5 tsf) 35 56 25 3.4 P 190 40 0" (50) LEAN CLAY (CL), very stiff (No Recovery, Classification per driller) 35 56 25 3.4 P	95	-		12"		(00,0)			9	6				Hydrometer Test
105 39 16" 400 psi brown, moist, high plasticity (pp=3.5/3.25/3.5 tsf) 35 56 25 3.4 P 190 40 0" (50) LEAN CLAY (CL), very stiff (No Recovery, Classification per driller) 35 56 25 3.4 P	-33	-					~~~							
LEAN CLAY (CL), very stiff (No Recovery, 190 -105 195 195	_	185- -				400 psi								
190 40 (50) -105 195	100				А	4			35		. 56	. 25	3.4 P	
	-	-		1		(50)								
195	105	-		0"	K									
	-	-		1										
	ł	195-												
	110	-												
	-	-												

BORING DEPTH: 201.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 17, 2007 COMPLETION DATE: July 20, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. Continued

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip

 LL: Near Grout
 RIG TYPE: Failing 1500

 DATE: July 17, 2007
 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich

 ETION DATE: July 20, 2007
 LOGGED BY: F. Wang/G. Tripathi

 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang

 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-87

TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08 09:48 a	
SVRT BORING LOG 011108 Z:\TUGENERAL\USERSUAIN_A\GINT\SVRT_PHASE 2_050208.GPJ	

Project No. 213213

ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Median of Santa Clara St., approx. 50 ft. E of 16th St. N 1,950,479 E 6,161,946 SURFACE EL: 87.4 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
Ξ		S II	SA	BL	MATERIAL DESCRIPTION	>	0	0`#			STR	Б
		41 18"		(77)	hard. yellowish brown, moist							
115		1 []						
205-												
120												
210-												
125												
215-												
130 ·												
					0							
220-												
135												
225-					\mathcal{O}							
140 ·												
- 230-					XO		+ • • • • • • •	+				
- 145					\mathcal{O}							
					20							
235-												
- 150												
						1						
240-												
- 155 ·												
245-												
- 160												
						1						
BORING] 	I RILLIN IAMME			: 5-in. (dia. Ro	tary Wa	۱ sh

BACKFILL: Neat Cement Grout START DATE: July 17, 2007 COMPLETION DATE: July 20, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

LL: Neat Cement Grout DATE: July 17, 2007 ETION DATE: July 20, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-87

Silicon Valley Rapid Transit Project San Jose, California

Sheet 5 of 5

Project No.	213213	

							LOCATION: Approx. 170 ft NW of Santa Clara St, 65 ft NE						Ľ.	Sheet 1 of
, ft	f	<u></u> .	Ö	(in)	YPE	, psi	of N. 17th St (within SJ Water lot) N 1,950,798 E 6,162,147		%	QΨ		≿⊋	UNDRAINED SHEAR STRENGTH, S _u , ksf	STS
ELEVATION,	DEPTH, ft	MATERIAL	LEN	RECOVERY (in	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 94.1 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	IED 8	OTHER TESTS
LEV	DEF	MAT SYN	AMP	00	MPL	SAN LOW RESS		DRY	MO2	% PA #200		PLAS	RAIN	L H
ш			0	R	SA	B문	MATERIAL DESCRIPTION	-					STF	Ö
	-						SILT (ML), medium, brown, moist, low plasticity,							
	-		1	1 5"		(12)	trace fine grained gravel and sand							
0	- 5-			2 1	цų	800 psi	SANDY SILT (ML), brown, moist, low plasticity							
	-		2	2 9" 		000 pc.								
	-				1:10									
35	- 10-			3 🗉	τη	1500 psi								
	-		2	3 0"		1000 poi	stiff, increasing sand at the bottom of the sample						···1.4 P··	
	-						(pp=1.25/1.75/1.25 tsf)							
30	- 15-				~	22	POORLY-GRADED SAND WITH SILT AND							
				4 ⊉ 1" ∠	2	23	GRAVEL (SP-SM), medium dense, brown, subangular gravel up to 1 inch (from the slough)							
	-													
'5	20-		IJ	_		1000	LEAN CLAY (CL), very stiff, yellowish brown, moist,							
	20		2	5 2"		1000 psi	low plasticity (pp= $2.25/1.75/2.0$ tsf, tv= 1.0 tsf)							
	-			F	2			•••••			• • • • • • • •		2.0 P 2.0 T	
70	25-					000		•••••						
	20		З	6 0"	i i	300 psi	stiff, yellowish brown, wet (pp=1.5/1.25/1.25 tsf,							
	-			Ľ	i ii		tv=0.6 tsf) (OVM=0.001 ppm, OXY=20.9%, CH4=0 ppm)						1.3 P ••1.2 T	
65	- 30-													
	-						SILT (ML), yellowish brown, moist							
	-			7	ΈB			•••••						
60	- 35-			k	4		OUTV CLAY (CLAN) have assist law plasticity			. 90		5		Hydrometer Tes
	-35			8 2" (•	ЭВ		SILTY CLAY (CL-ML), brown, moist, low plasticity, subangular gravel up to 1 inch							
	-			9 6"	В									
5			IJ.	10			LEAN CLAY (CL), yellowish brown, moist, low							
	40-		Δ				plasticity		25		34	16		
	-		7	6" C	<u>зв</u>									
50	-		\int_{2}^{1}	12 0" (ЭВ		gray							
	45-			13)"	7		SILTY SAND (SM), no recovery from Geo-Barrel							
	-			14 4" (-	1		(classification per drilling and soil cuttings) SILTY CLAY (CL-ML), dark brown, wet, low							
	-		112	4 (·	àΒ		SILTT CLAT (CL-IVIL), UAIK DIOWII, WEL, IOW	• • • • • • •					•••••••••	

Continued

BORING DEPTH: 112.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 18, 2007 COMPLETION DATE: June 18, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL

DATE: June 18, 2007 ETION DATE: June 18, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-88

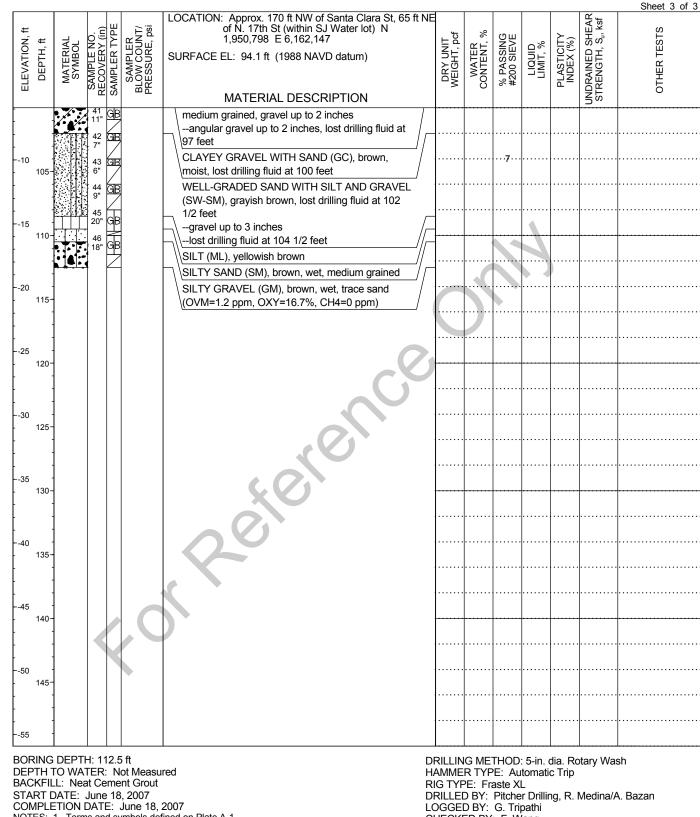
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 170 ft NW of Santa Clara St, 65 ft of N. 17th St (within SJ Water lot) N 1,950,798 E 6,162,147 SURFACE EL: 94.1 ft (1988 NAVD datum) MATERIAL DESCRIPTION		WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
			19"	GB		LEAN CLAY (CL), gray, moist, medium plasticity							
	-		16 24"	GВ									
40			1 17 24"	GВ		SILT (ML), gray, moist							
	55-		18 22"	GR		LEAN CLAY (CL), gray, moist	_						
			19										
	-		24"	GΒ				•••					
35	- 60		20 30"										
				GB									
		FTTT	21 30"	ſ		SILT (ML), gray, moist, low plasticity							
30				GB		stiff, gray					[
	65-		22	F									
			35"	GΒ		yellowish brown Ended drilling on 6/18/07 at 68 ft							
			23	GR		Began drilling on 6/19/07 at 68 ft			· 100·	40	13		····Hydrometer tes
25	70-		12" 24 14"	GB		dark brown (OVM=0 ppm, OXY=20.9%, CH4=0	\square						
	70-		14" 25	Ż			_		11	NP	NP		Hydrometer tes
	-		17" 26	GB		POORLY-GRADED GRAVEL WITH SILT AND SAND (GP-GM), brown	7	•••					
20			0"	/		WELL-GRADED SAND WITH SILT AND GRAVEL							
	75-			L		(SW-SM), brown, medium grained, subrounded							
			27 24"	GВ		gravel up to 1 inch no recovery from Geo-Barrel		•• ••••••					
	-		28	Þ									
15			0"			no recovery from Geo-Barrel							
	-08		29 13"	GB		subangular and subrounded gravel up to 1 inch			_				
	-		30 18"	GВ		gravel up to 3 inches		•••	7				
10	-		31 8"	GB		POORLY-GRADED GRAVEL WITH SAND (GP),	<u> </u>						
10	85-	•••	32 15"	GB		gray, moist, angular gravel up to 2 inches							
	-		33	Ŕ		lost drilling fluid at 85.0 feet	/	•••					
	-		24"	GΒ		LEAN CLAY WITH GRAVEL (CL), yellowish brown, low plasticity, trace fine gravels							
5		///	34 27"	GB		greenish brown, increasing plasticity (OVM=0.1	_						
	90-		35	GB		ppm, OXY=20.8%, CH4=0 ppm)	/						
			7"			increasing sand SANDY LEAN CLAY (CL), stiff, yellowish brown,	/	•••					
0	-		36 18"	$\langle \rangle$	(80)	moist, fine to medium grained sand							
0	95-		37 6"	ĠB		WELL-GRADED GRAVEL WITH SILT AND SAND	Г		5				Hydrometer tes
	-		38 17"	GB		(GW-GM), gray, subangular gravel up to 2 inches	/	•••					
			39 9"	\square		very dense, medium grained, trace medium angular gravel							
-5	-		40 11"	GB		SILTY SAND WITH GRAVEL (SM), brown, moist,	Н						

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL

DATE: June 18, 2007 ETION DATE: June 18, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for COMPLETION DATE: June 18, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

DEPTH TO WATER: Not Measured

BACKFILL: Neat Cement Grout


START DATE: June 18, 2007

LOG OF BORING NO. BH-88

TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08 09:48 a

SVRT BORING LOG 011108 Z:/TUGENERAL/USERSUAIN_A/GINT/SVRT_PHASE 2_050208.GPJ

COMPLETION DATE: June 18, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. CHECKED BY: F. Wang 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

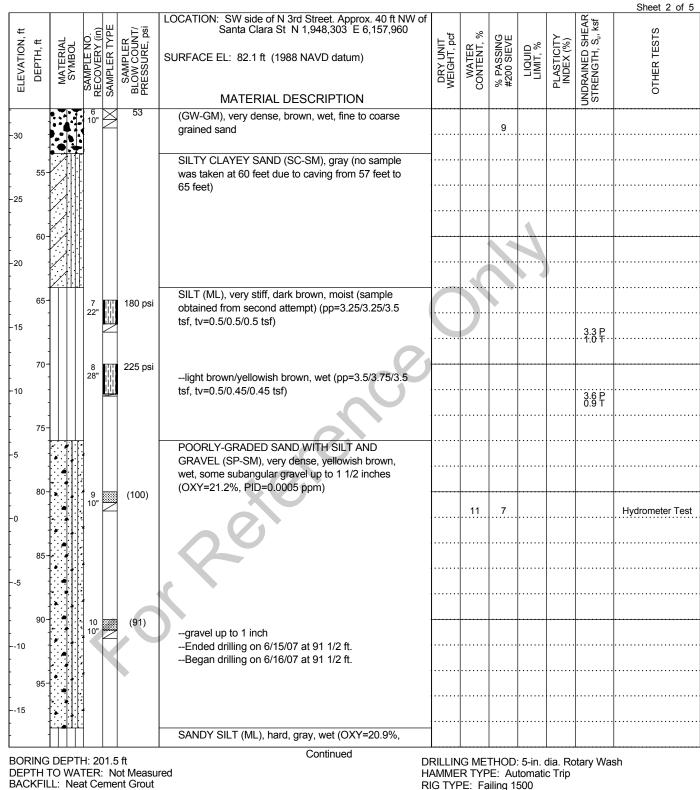
design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-88

	_											Sheet 1 of
t źt		ji	ΥΡΕ	R INT/ Psi	LOCATION: SW side of N 3rd Street. Approx. 40 ft NW of Santa Clara St N 1,948,303 E 6,157,960	ocf	%	QШ		≿₀	SHEAR S _u , ksf	STS
ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in	SAMPLER TYP	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 82.1 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
Ш		RE S/	SAI	PR	MATERIAL DESCRIPTION	5	Ō	~#		<u>م</u> –	STR	5
0				(11)	5 inches of ASPHALT CONCRETE (core) (OXY=21.2%, CH4=2 ppm, PID=0.0005 ppm)							
		14"		(11)	SANDY LEAN CLAY (CL), very stiff, brown, moist, some sand (pp=4.0/3.5/3.5 tsf)						3.7 P	
5		1			SILT (ML), medium, brown, very moist, low plasticity	-						
1(2		100 psi	Began rotary wash, set casing to 8 1/2 ft							
D		2 27"	1,1,1 1,1,1 1,1,1 1,1,1	100 p31								
					(pp=0.5/0.5/0.5 tsf, tv=0.3/0.3/0.35 tsf)						0.5 P 0.6 T	
15					LEAN CLAY (CL), stiff, brown, wet							
5												
20		3		50 psi								
0					(pp=1.5/1.0/1.5 tsf, tv=0.5/0.45/0.4 tsf) (OXY=21.2%, PID=0.0005 ppm)		32		37	16	1.3 P 0.9 T	
25	5-				color change from brown to gray at approximately 25 feet							
5					201001							
30		4 27"	!;!;]	50 psi	60							
C		4			SILT (ML), stiff, dark brown, moist, low plasticity (pp=1.5/1.5/1.25 tsf)						1.4 P	
35	5-									•••••		
5		• :			SILTY SAND (SM), medium dense, yellowish brown, wet, fine to medium grained, large gravel at							
4(the bottom of the sampler							
)+)		5 16"		(38)		106	23	47				Direct Shear
-			K								 	
4	5-1: [:]; :]:	:		*							 	
5					lost drilling fluid at 47 1/2 feet						-	
					WELL-GRADED GRAVEL WITH SILT AND SAND Continued							

DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 5, 2007 COMPLETION DATE: June 8, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: L Bhangoo/R Vedantham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.



LOG OF BORING NO. BH-89

SVRT BORING LOG 011108 Z:/TUGENERAL/USERS/JAIN_A/GINT/SVRT_PHASE 2_050208.GPJ

Project No. 213213

START DATE: June 5, 2007 COMPLETION DATE: June 8, 2007

NOTES: 1. Terms and symbols defined on Plate A-1.

RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: L Bhangoo/R Vedantham CHECKED BY: F. Wang

2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-89

TH, ft	-		Ь.	YPE	R NT/ psi	LOCATION: SW side of N 3rd Street. Approx. 40 ft NW of Santa Clara St N 1,948,303 E 6,157,960	g″ ⊣	%	QΨ		≿∍	N. K	STS
ELEVATION, ft DEPTH, ft		SYMBOL	SAMPLE NO RECOVERY (i	SAMPLER TYPI	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 82.1 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
ш			0,5	S⊿	84	MATERIAL DESCRIPTION					-	STF	Ö
			11		(59)	LEL=0%, PID=0 ppm)							• • • • • • • • • • • • • • • • • • • •
20													• • • • • • • • • • • • • • • • • • • •
105	5-												
-								•••••					
25													
110													
110	-		12 27"	111111111		(pp=>4.5/>4.5/>4.5 tsf, tv=0.45/0.45/0.40 tsf)		-					
30				Null I								>4.5 P 0.7 T	
											[0.7 1	
115	5-												
35													• • • • • • • • • • • • • • • • • • • •
		ļļ				some gravel							
120	1		. 12	-		CLAYEY SAND WITH GRAVEL (SC), brown, moist, some subrounded gravel up to 1 inch							
.20			13 22"	1111111		(OXY=20.9%, LEL=0%, PID=0 ppm)							
0	1/	/ /		Ž				•••••					
125	5	/ . /				α							
15		//				S O							
	1/		1					•			• • • • • • •		• • • • • • • • • • • • • • • • • • • •
130)- /	/	14		(62)	$\langle \langle \rangle \rangle$							
50	1/	/ /	1"	Ц		dense, gray (mostly slough in sampler)							
10	1		1										
135	1/											•••••	
100			1										
55	Ż					SANDY LEAN CLAY (CL), very stiff, yellowish	1						
	V		1			brown, wet							
140	\mathbf{V}		15 26"	111111									
60	V			11111		(pp=2.5/3.0/2.5 tsf, tv=0.25/0.30/0.25 tsf)						270	
	V	///	1			(OXY=20.9%, LEL=0%, PID=0 ppm)						2.7 P 0.5 T	
145	5¥	///	16	1									
_	h	44	28"	11111111111		SILT WITH SAND (ML), yellowish brown, wet, fine	·····	••••••					
65	1			1 ¹¹		grained sand		20	. 79				Hydrometer Te
			:			SILTY SAND (SM), yellowish brown, fine to medium							
ORING	•		Η· 20)1 5	ft	Continued	RILIN	IC ME.		• 5_in	dia Pr	otary Wa	sh
EPTH	TO	WA	TER	: N	ot Measu	red H	AMME	R TYP	E: Au	itomati			011
ACKFI FART					nt Grout 2007	R n	IG TYI RILLE	PE: Fa D BY:	iling 1	500 er Drilli	nal	Willard/I	. Musich

COMPLETION DATE: June 8, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

 ETION DATE: June 8, 2007
 LOGGED BY: L Bhangoo/R Vedantham

 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang

 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-89

09:48 a

TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08

SVRT BORING LOG 011108 Z:/TUGENERAL/USERS/JAIN_A/GINT/SVRT_PHASE 2_050208.GPJ

BORING DEPTH 2015 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 5, 2007 COMPLETION DATE: June 8, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: L Bhangoo/R Vedantham CHECKED BY: F. Wang

2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-89

	1					_						Sheet 5 o
ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: SW side of N 3rd Street. Approx. 40 ft NW of Santa Clara St N 1,948,303 E 6,157,960 SURFACE EL: 82.1 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
				(64)	MATERIAL DESCRIPTION						<u>З</u> б	
-		27		(04)	dense	4						
-120 -	-					1						
- 205-									•••••			
-	-											
-125 -												
- 210-	-											
-130 -												
-150 -	-											
215-												
- -135 ⁻									•••••		• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
-	-											
220-)						
- -140 -	-					ĺ						
-												
225-	-											
-145 -												
-	-											
230-												
-150 -	-											
-					\sim							
235-												
155 -												
-	-											
240-												
-160 -					r							
-												
245-												
-165 -												
-	-											

BORING DEPTH: 201.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 5, 2007 COMPLETION DATE: June 8, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: L Bhangoo/R Vedantham

 Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

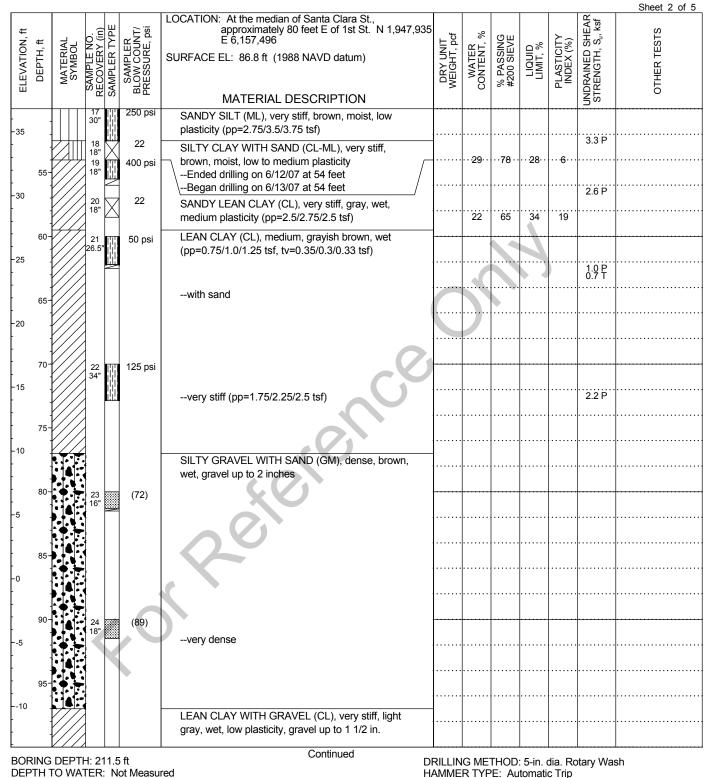
LOG OF BORING NO. BH-89

Silicon Valley Rapid Transit Project San Jose, California

Project No. 213213

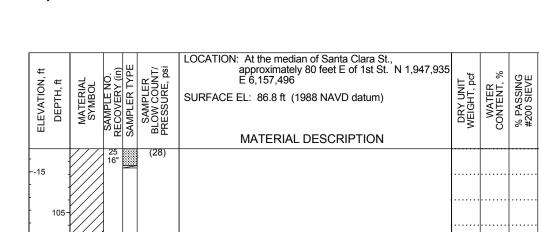
						LOCATION: At the median of Santa Clara St.,						SHEAR , S _u , ksf	Sheet 1 of
Ľ, Ħ	÷	_	о.е́	SAMPLER TYPE	NT/ psi	approximately 80 feet E of 1st St. N 1,947,935 E 6,157,496	ت _	%	ωш		≻~	Ц Ц Ц Х Ц	OTHER TESTS
õ	H, ft	MATERIAL SYMBOL	Ž≿	Г- х	ЧОЦ ЧОСЩ		DRY UNIT WEIGHT, pcf	WATER CONTENT,	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	S O T	ES I
ELEVATION,	DEPTH,	MBF	虹灯	Щ		SURFACE EL: 86.8 ft (1988 NAVD datum)	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	E A	ASS O SI	D S F	Г.Х.	国白	L A
Ъ	Ш	SY ^{IA}	₿Ś	JPL	NAC III		КЩ	l≥z	20 P	ΞΞ	PEK		뽀
Ц		2	SAMPLE NO. RECOVERY (ir	SAN	SAMPLER BLOW COUNT/ PRESSURE, psi	MATERIAL DESCRIPTION	_>	ŏ	8#		<u>م</u> –	UNDRAINED S STRENGTH,	D TO
		\	1			6 inches of ASPHALT CONCRETE							
35	-					old concrete and wood pieces (FILL)							
	5-		1 15"		(14)	SANDY LEAN CLAY (CL), stiff, yellowish brown, moist, low plasticity				•••••			
30	-		2		(15)						• • • • • • •		
50				<u>~</u>		(OXY=20.9%, CH4=2 ppm, OVM=0 ppm)							
	-		1										
	10-		3		(8)								
	-		15"		(-)	medium							
75	-		{									• • • • • • • • • • •	
]		1			SANDY SILT (ML), medium, brown, moist					[
	15-		4	U U	300 psi								
	-		25"	iiii	500 p3i							07P	
70	-			<u>ĽĽ</u>		(pp=0.75/0.5/0.75 tsf, tv=0.15/0.15 tsf)						0.7 P 0.3 T	
	-	////				LEAN CLAY (CL), medium, gray, moist, medium			• • • • • • •	• • • • • • • •	• • • • • • •	• • • • • • • • • • •	
	20-				50	plasticity (pp=0.5/0.75/0.5 tsf, tv=0.25/0.23/0.25 tsf)							
	20		5 26"	li ii	50 psi							0.6 P 0.5 T	
65	-		1	ili)								0.5 T	
	-		6 16"	\boxtimes	8	FAT CLAY (CH), medium, dark gray, moist,							
		////				medium plasticity		• • • • • • • •	• • • • • • •	• • • • • • •	• • • • • • •	• • • • • • • • • • •	
	25-		7 24"	li ii	200 psi	LEAN CLAY (CL), stiff, light grayish brown, moist							
60	-		1	ΗIJ		(pp=1.5/1.5/1.5 tsf, tv=0.35/0.4/0.35 tsf)						4.5.0	
	-		8 17"	$\overline{\mathbf{X}}$	18	von etiff brown		•••••				1.5 P · · 0.7 T · ·	
	-		1	\sim		very stiff, brown		23	89	36	14		
	30-		9 28.5"	99	150 psi	SILTY SAND (SM), yellowish brown, moist,		+ • • • • • • •				•••••	• • • • • • • • • • • • • • • • • • • •
55			20.5	iiii		fine-grained							
	-		10 16"	$\overline{\nabla}$	13								
	-			\bowtie		SANDY SILT (ML), stiff, brown, moist		···28··	70	··NP··	··NP··		
	35-		11 9"	1111	125 psi	SILTY SAND (SM), brown, moist, fine to medium							
50			9.			grained			• • • • • • •		• • • • • • •		
		///	12 18"	K	4	LEAN CLAY (CL), soft, dark gray, moist, low							
	-		18"	ightarrow		plasticity		28	81	30	8		
	40-		13		0			·····		• • • • • • • •		•••••	
15	-		18"	Å		FAT CLAY (CH), very soft, dark gray, moist, high							
ŧJ			14	<u>er</u> y	100 psi	plasticity, some organics							
]		14 30"	ΪŅ	· .	SANDY SILT (ML), gray, moist							
	45-	$ \downarrow\downarrow\downarrow\downarrow$	15	ШIJ,	8			22					
	-	////	15 18"	М	5	LEAN CLAY WITH SAND (CL), medium, gray, moist, some organics		24	70		8		
10	-		16	\square	12	moisi, some organics		-:					
	-	////	16 18"	X	12	stiff, brown					• • • • • • •		
	-	////	1										

Continued


BORING DEPTH: 211.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 12, 2007 COMPLETION DATE: June 15, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-90


BACKFILL: Neat Cement Grout START DATE: June 12, 2007 COMPLETION DATE: June 15, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

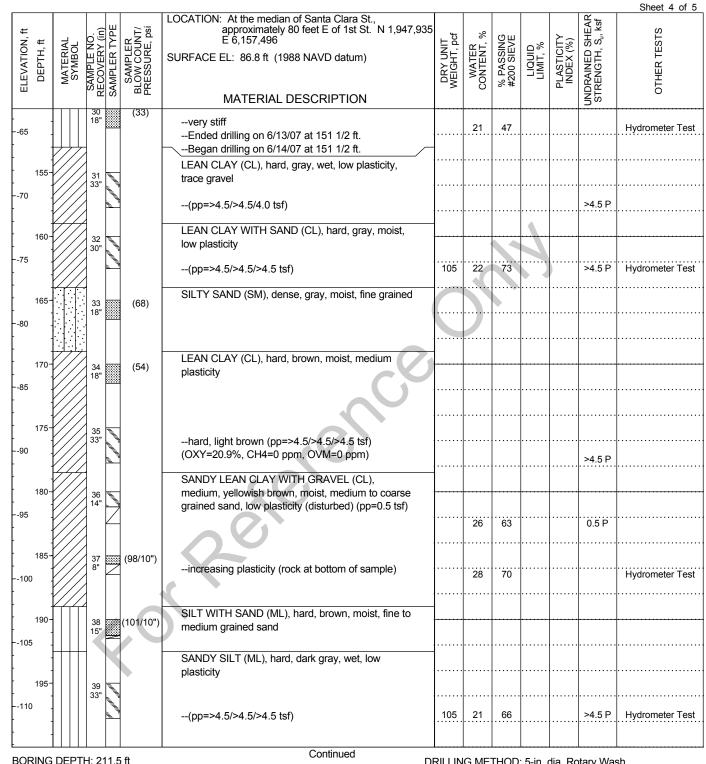
LOG OF BORING NO. BH-90

ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: At the median of Santa Clara St., approximately 80 feet E of 1st St. N 1,947,935 E 6,157,496 SURFACE EL: 86.8 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
-		25 16"		(28)					•••••			••••••
15 -		1 [· · · · · · · · · · · · · · · · · · ·		•••••		• • • • • • • •			
- 105							•••••		• • • • • • • • •			
20	$\langle / / \rangle$						•••••					
-20							•••••					
110		26 34"	Cert	250 psi								
- 25		34"			very stiff, brown, moist (pp=3.75/4.0/4.25 tsf)						4.0 P	
-											4.0 F	
115					(
30 -					SILTY SAND WITH GRAVEL (SM), very dense, yellowish brown, wet, coarse grained gravel up to 1							
- 120				(00)	1/4 inches							
	' · -	27 12"	\geq	(99)								
-33							•••••					
125	5-				LEAN CLAY (CL), very stiff, gray, wet, low plasticity		•••••				•••••	••••••
- 40							•••••					
-							•••••		• • • • • • • • •			
- 130 -		28 18"		(69)					•••••			••••••
45 -							•••••		• • • • • • • •			
- 135							•••••					
	, 				SILT WITH SAND (ML), hard, gray, wet,		•••••					
-				4	fine-grained, low plasticity		•••••					
- 140		29 30"	폢	375 psi					• • • • • • • • •			
- 55		30"	Ľ,		(pp=3.75/4.0/4.5 tsf)		•••••				 4.1 P	
-											4.1F	
- 145 -	5-			*								
60												
-												
BORINO DEPTH BACKE	TO WA	TER:	No	ot Measu	red H/	AMME	R TYP	THOD E: Au	tomati	dia. Ro c Trip	otary Was	sh

START DATE: June 12, 2007 COMPLETION DATE: June 15, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-90

Silicon Valley Rapid Transit Project San Jose, California

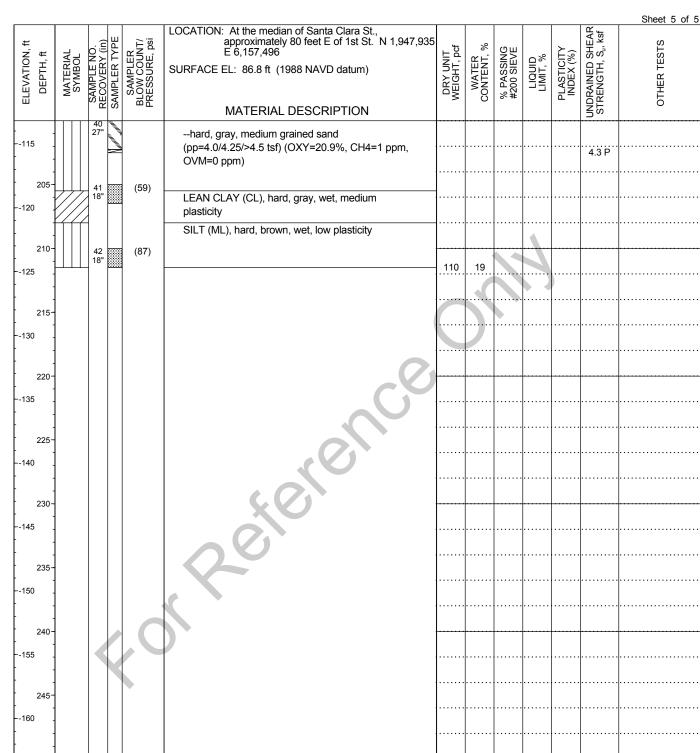


Sheet 3 of 5

09:49 a

TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08

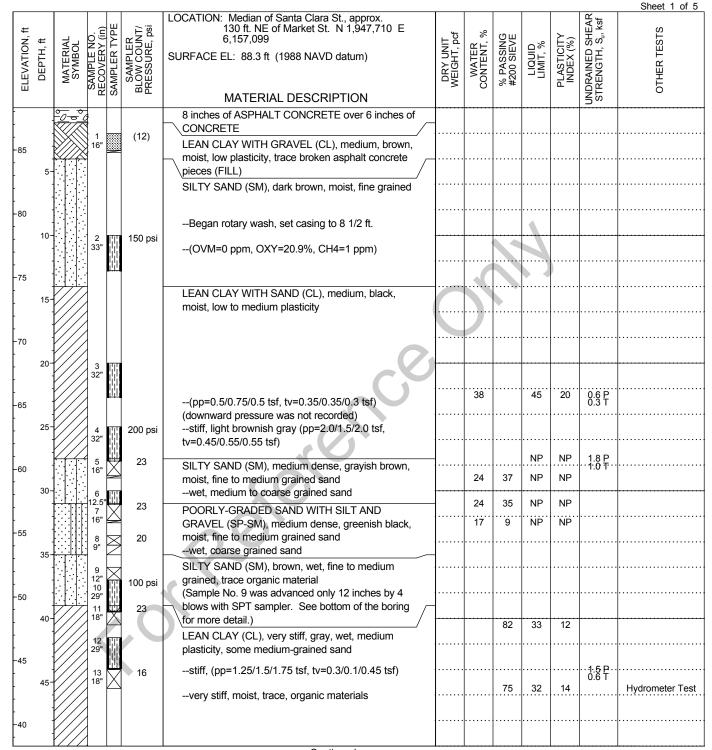
SVRT BORING LOG 011108 Z:\TUGENERAL\USERS\JAIN_A\GINT\SVRT_PHASE 2_050208.GPJ


BORING DEPTH: 211.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 12, 2007 COMPLETION DATE: June 15, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

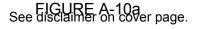
LOG OF BORING NO. BH-90

BORING DEPTH: 211.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 12, 2007 COMPLETION DATE: June 15, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.


DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-90


Continued

BORING DEPTH: 196.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 19, 2007 COMPLETION DATE: June 22, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-91

													Sheet 2 of 5
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Median of Santa Clara St., approx. 130 ft. NE of Market St. N 1,947,710 E 6,157,099 SURFACE EL: 88.3 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
-	-		14		350 psi	SILTY SAND (SM), gray, wet, fine to medium grained							
-35 -	- - 55-					LEAN CLAY (CL), stiff, light gray, moist, medium plasticity	-						
- - -30	-							•••••					
-	60- - -		15 18"	X	11								
-25 - -	65-							·····					
- -20 -	- - - 70-		16		225 psi	0							
- - -15	-		16 34"		220 por	(pp=1.75/2.0/1.75 tsf, tv=0.4/0.45/0.6 tsf)	104	22				1.8 P 1.0 T	
-	- 75 -					increasing gravel at 74 1/2 ft CLAYEY GRAVEL (GC), very dense, brownish gray, moist, coarse-grained sand		•••••					
-10 -	- - 80		17 16"	X	55	50		•••••	· · · · · · · · · · · · · · · · · · ·				
- 5 -	-					00		•••••					
-	85- - -					lost drilling fluid at 86 feet		•••••					
-	-90 -		18 15"	\boxtimes	60	brown, gravel up to 1/2 inch							
- 5 -	- - 95-					Down, gravel up to 1/2 inch Ended drilling on 6/19/07 at 91 1/2 ft. Began drilling on 6/20/07 at 91 1/2 ft.							
- - 10	-												
[///	1			LEAN CLAY (CL), stiff, light gray, moist, low	I	l		l	l		l
DEF BAC	TH T		TER at Ce	No No	ot Measu nt Grout	red H. R	amme Ig tyf	R TYP PE: Fa	E: Au	tomati 500	c Trip	otary Wa	

COMPLETION DATE: June 22, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

LOGGED BY: R. Vedantham

 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang

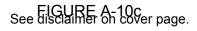
 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

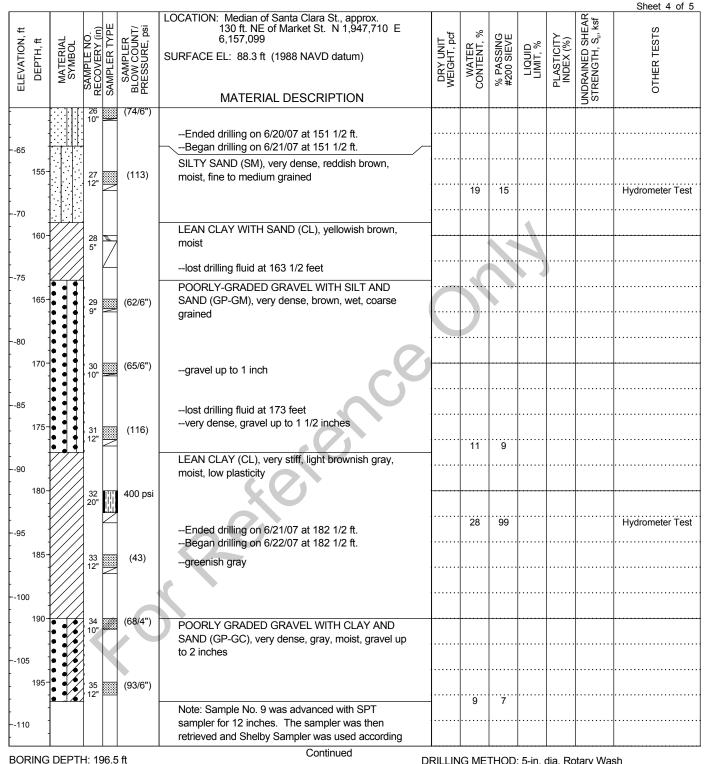
 design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-91

Project No.	213213	

ELEVATION, ft DEDTH #	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Median of Santa Clara St., approx. 130 ft. NE of Market St. N 1,947,710 E 6,157,099 SURFACE EL: 88.3 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
ELE/	A A S	SAM	SAMP	SA BLOV PRES		VEI	≤S	#20		PLA	DRAI	01HE
		19	0	21	MATERIAL DESCRIPTION						Ч.	
15 1(05-	18"	X	21	plasticity minor gravel lens encountered from 105 feet to 106 feet depth							
20 11	10-	20 14"	11111111		SILTY CLAY (CL-ML), very stiff, yellowish brown, moist, low plasticity							
25					(pp=2.0/3.5/3.5 tsf, tv=0.35 tsf)	101)	3.0 P 0.7 T	
11					SILTY GRAVEL WITH SAND (GM), very dense, brown, wet, medium to coarse grained sand							
12	20-	21 10"	X	71	-Q							
5 12	25-											
0					LEAN CLAY (CL), hard, yellowish brown, moist, low plasticity							
13		22 32"		400 psi	(pp=4.0/3.5/4.5 tsf)						···4.0 P··	
5 13	35-	23 16"		(46)	light brown				•••••			
0 14	40-	24 4 26"	स्राप्ते	400 psi								
5		4 26"			CLAYEY SAND WITH GRAVEL (SC), brown, wet, coarse-grained sand		 15	39				Hydrometer Te
14 0	45	25 10"		(68/6")	POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), very dense, brown, wet, gravel up to 1 inch		···12··	8				


DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 19, 2007 COMPLETION DATE: June 22, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.


DRILLING METHOD: 5-in. dia. Ro HAMMER TYPE: Automatic Trip Rotary Wash LL: Neat Cement Grout DATE: June 19, 2007 ETION DATE: June 22, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-91

Continued

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

NOTES: 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

DEPTH TO WATER: Not Measured

BACKFILL: Neat Cement Grout

START DATE: June 19, 2007 COMPLETION DATE: June 22, 2007

LOG OF BORING NO. BH-91

145

150 240

155 245

-160

235

ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Median of Santa Clara St., approx. 130 ft. NE of Market St. N 1,947,710 E 6,157,099 SURFACE EL: 88.3 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR
			•,		MATERIAL DESCRIPTION						5
-					to the sampling schedule per Kleinfelder.						
-115											
205-											••••
205											
-120											
210-							· · · · · · · ·				
-											
-125											
215-											
-								• • • • • • •			
-130											
220-											
-											
-135											
-						• • • • • • •					
225-											.
-											
-140											
230-					X C		<u> </u>		 		<u> </u>

BORING DEPTH: 196.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 19, 2007 COMPLETION DATE: June 22, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip

 LL: Neat Cement Grout
 RIG TYPE: Failing 1500

 DATE: June 19, 2007
 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich

 ETION DATE: June 22, 2007
 LOGGED BY: R. Vedantham

 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang

 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-91

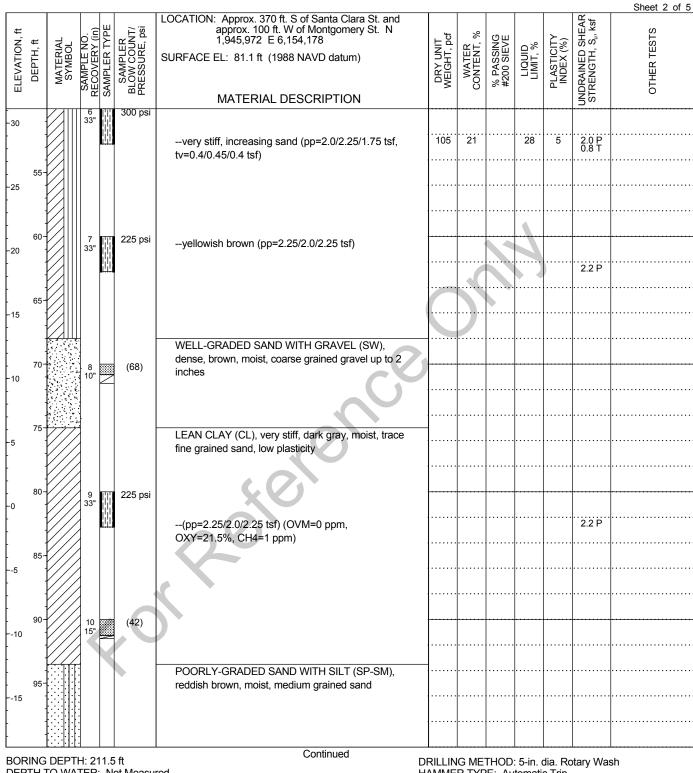
Silicon Valley Rapid Transit Project San Jose, California

Sheet 5 of 5

OTHER TESTS

Project No. 213213

ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 370 ft. S of Santa Clara St. and approx. 100 ft. W of Montgomery St. N 1,945,972 E 6,154,178 SURFACE EL: 81.1 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
ELEV	DEI	NA SYI	SAMF FCOV	AMPL	SAN BLOW RESS		DR	CON	% P/ #200		PLAS	RENC	OTHE
_			^œ	S	шц	MATERIAL DESCRIPTION						N ST	0
80		<u>.</u>	1			6 inches of ASPHALT CONCRETE	-						
	-		1		(15)	LEAN CLAY WITH GRAVEL (CL), stiff, dark brown, moist, low plasticity (FILL)				•••••			
	-		\$									• • • • • • • • • • •	•••••
75	5-					SILT (ML), very stiff, brown, moist, low plasticity]						
	-					Began rotary wash, set casing to 8 1/2 ft							
	10-		2 33"		200 psi							•••••	
0	-												
	-			1 1111		(pp=2.0/2.5/2.0 tsf, tv=0.4/0.45/0.375 tsf) (OVM=0 ppm, OXY=21%, CH4=2 ppm)						2.1 P 0.9 T	
	- 15-									• • • • • • • •			
65							Į						
	-												
	-		4				-						
	20-		3	ц:н	125 psi	LEAN CLAY (CL), stiff, brown, moist, low plasticity (pp=2.0/1.75/2.0 tsf, tv=0.35/0.4/0.45 tsf))						
50	-		32"			(pp=2.0/11/0/2.0 t3), tv=0.00/0.40 t3)	1						
	-			<u>iti</u> ti								1.9 P 0.8 T	
												•••••••••••••••••••••••••••••••••••••••	
55	25-					\mathbf{O}							
	-												
	-		1								•••••	••••••	•••••
	30-		4	ויויו	225 psi	(())				•••••			
50	-		33"	i i i		yellowish brown, low plasticity (pp=1.75/2.0/1.75							
	-			111		tsf, tv=0.4/0.38/0.35 tsf)	1					1.8 P 0.8 T	
	-												
_	35-												
5			1										
	-		1		4							••••••	
	40-	ΎΓ				WELL-GRADED GRAVEL WITH SILT AND SAND	-						
10	-10		12"		(58)	(GM), dense, brown, wet, coarse grained gravel							
	-	• -				r						······	
	-		4										
	45-		4			SILTY CLAY (CL-ML), very stiff, gray, moist, low	-						
35	-					plasticity						•••••••••••••••••••••••••••••••••••••••	•••••
	-												
	_	r/111					1						


BORING DEPTH: 211.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 25, 2007 COMPLETION DATE: June 27, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500

DATE: June 25, 2007 ETION DATE: June 27, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

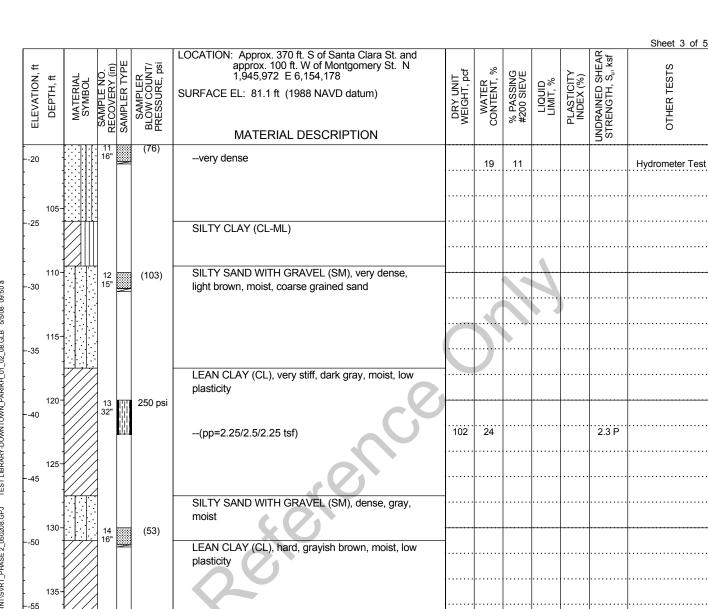
LOG OF BORING NO. BH-93

BORING DEPTH: 211.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 25, 2007 COMPLETION DATE: June 27, 2007

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

NOTES: 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-93


140

145 -65

-60

15 18"

(56)

Continued

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

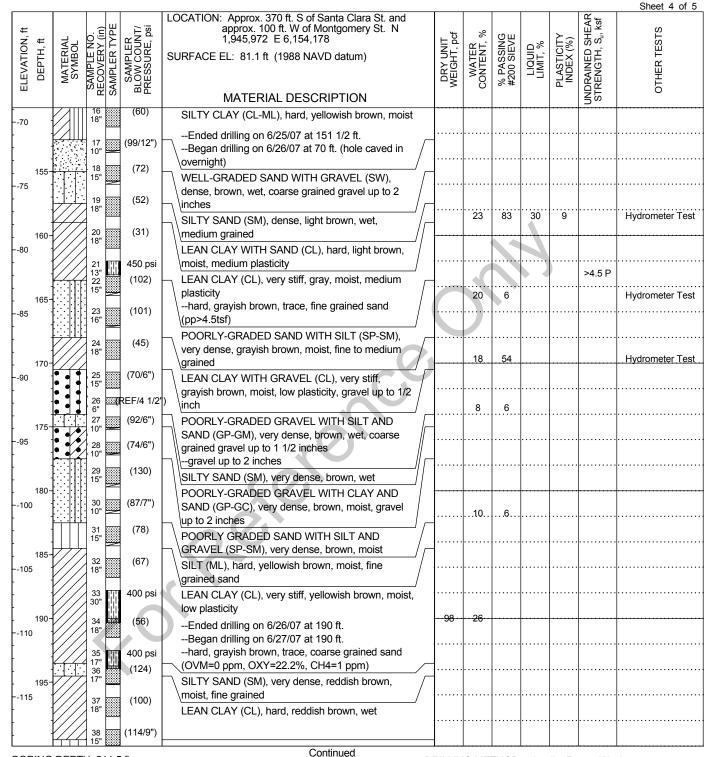
NOTES: 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

BORING DEPTH: 211.5 ft

DEPTH TO WATER: Not Measured

BACKFILL: Neat Cement Grout

START DATE: June 25, 2007 COMPLETION DATE: June 27, 2007


LOG OF BORING NO. BH-93

Silicon Valley Rapid Transit Project San Jose, California

Sheet 3 of 5

OTHER TESTS

BORING DEPTH: 211.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 25, 2007 COMPLETION DATE: June 27, 2007

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

NOTES: 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-93

	-					-						Sheet 5 of 5
ELEVATION, ft DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 370 ft. S of Santa Clara St. and approx. 100 ft. W of Montgomery St. N 1,945,972 E 6,154,178 SURFACE EL: 81.1 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
-					SILT WITH SAND (ML), hard, grayish brown, wet,		27	75	35	9		Hydrometer Test
120 ·					medium to coarse grained sand and subangular to subrounded gravel							
205-												
125 ⁻		-			interbedded clay/sand to 207 feet							
					POORLY-GRADED GRAVEL (GP), gravel lens from 207 feet to 209 feet			•••••				•••••
- 210-		39		(87)	LEAN CLAY (CL), hard, reddish brown, moist,							
130 ·		18"			medium plasticity, trace sand	_ 						••••••
										ľ		
- 215-												
135 ⁻	-											
· ·												•••••
- 220-	-											
140 -	-											
								•••••				• • • • • • • • • • • • • • • • • • • •
145	-				2 et er er							
[.												
- · · · ·					(.7)				•••••			
150 ·	-											
												• • • • • • • • • • • • • • • • • • • •
	-											
- 235- 155 ⁻												
	-											
- 240-								•••••				
160 ·	-											••••••
- 245-	-			•								
165 ⁻							•••••					•••••
						I						ļ
BORING											otary Was	sh
DEPTH BACKFII				ot Measu						c Inp		

START DATE: June 25, 2007 COMPLETION DATE: June 27, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

 LL: Neat Cement Grout
 RIG TYPE: Failing 1500

 DATE: June 25, 2007
 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich

 ETION DATE: June 27, 2007
 LOGGED BY: R. Vedantham

 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang

 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

 design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-93

													Sheet 1 of
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 350 ft SE of Lenzen Ave. Approx. 75 ft SW of Stockton Ave. N 1,947,990 E 6,152,019 SURFACE EL: 83.1 ft (1988 NAVD datum) MATERIAL DESCRIPTION	WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
	4	717				4 1/4 inches of ASPHALT CONCRETE	•••••			•••••			
80			1 16"		(7)	LEAN CLAY (CL), medium, yellowish brown, moist, medium plasticity	· · · · ·						
75	5-		2 30"		225 psi	stiff, light brown, low plasticity (pp=1.75/1.75/1.75 tsf, tv=0.35/0.35/0.35 tsf) (OXY=20.9%, CH4=0 ppm, OVM=0 ppm) Began rotary wash, set casing to 8 1/2 ft							
70	10-		3 30"		100 psi	SILTY CLAY (CL-ML), stiff, brown, moist, low plasticity (pp=1.75/1.75/1.75 tsf, tv=0.35 tsf)						1.8 P 0.8 T	
	15-		4 29"		100 psi	LEAN CLAY (CL), medium, dark brown, moist (pp=0.5/0.75/0.5 tsf)				•••••			
65	ł		1										
·60	20-		5 32" 6 30"		125 psi 150 psi	ORGANIC SILT (MH)/FAT CLAY (CH), medium, grayish brown, moist, medium plasticity (pp=0.5/0.75/1.0 tsf, tv=0.4 tsf) LEAN CLAY (CL), medium, brown, moist, low to		40			25	0.8 P 0.8 T	
	25-		7		125 psi	LEAN CLAY (CL), median, brown, molst, low to medium plasticity (pp=1.0/0.75/0.75 tsf, tv=0.5 tsf) stiff (pp=1.25/1.5/1.0 tsf, tv=0.4 tsf)	·····	•••••		•••••		0.8 P 1.0 T	
55	30-		8 29"		125 psi	medium, low plasticity (pp=0.5/0.75/0.5 tsf, tv=0.35 tsf)						1.3 P ⋯0.8 T ⋯	
50	30		9 25" 10		375 psi (3)	SILTY SAND (SM), grayish brown, moist, medium	 104	23				<u>0.6 P</u> 0.7 T 	
	35-		15" 11 12"		(67)	gallons) SANDY SILT WITH GRAVEL (ML), very soft, dark brown, moist, fine grained sand, lost drilling fluid at	·····	•••••		•••••			
45			12 15"		(79)	33 feet (10 gallons) WELL-GRADED GRAVEL WITH SAND (GW), dense, gray, wet, coarse grained gravel up to 2		8	5	•••••			
	40-		13 0" 14	Z	(13) (16)	POORLY-GRADED GRAVEL WITH SILT AND							
40	45		15 18" 16 15"		(10) 150 psi (22)	SAND (GP-GM), very dense, gray, wet, coarse grained gravel SILTY CLAY (CL-ML), stiff, gray, moist, low to						1.9 P 0.9 T	
35			17 16"	N	(24)	medium plasticity (disturbed sample obtained on second attempt)		30		38	15		

Continued

BORING DEPTH: 101.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 23, 2007 COMPLETION DATE: July 24, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip

 LL: Neat Cement Grout
 RIG TYPE: Failing 1500

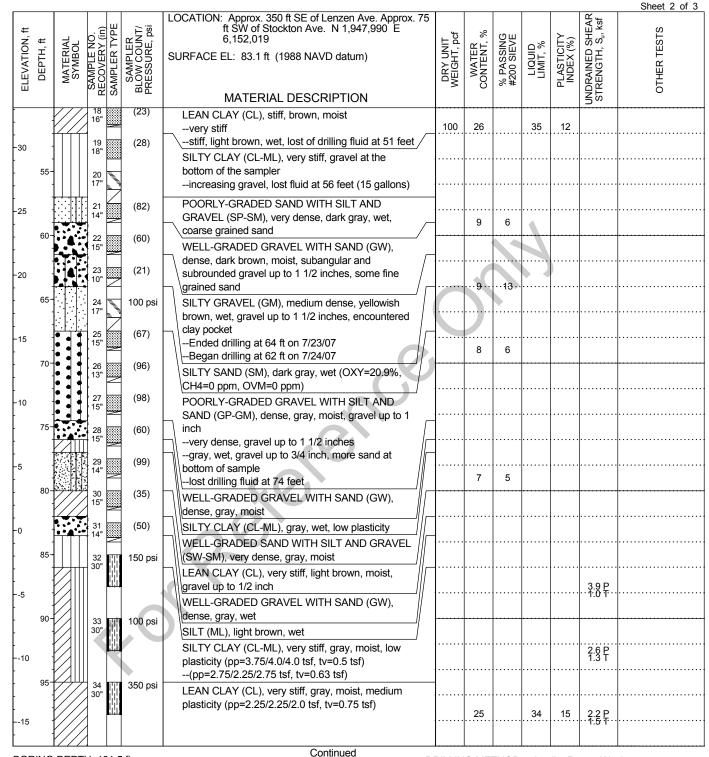
 DATE: July 23, 2007
 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich

 ETION DATE: July 24, 2007
 LOGGED BY: G. Tripathi/R. Vedantham

 1. Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang

 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for

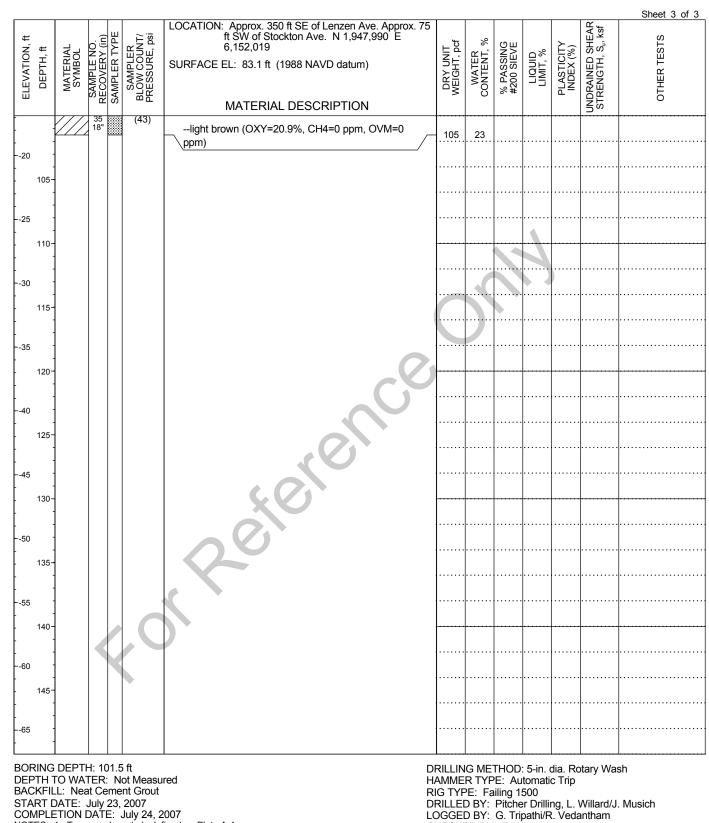
design purposes. For applicable groundwater information, please refer to piezometer and observation well data.


LOG OF BORING NO. BH-95

Silicon Valley Rapid Transit Project San Jose, California

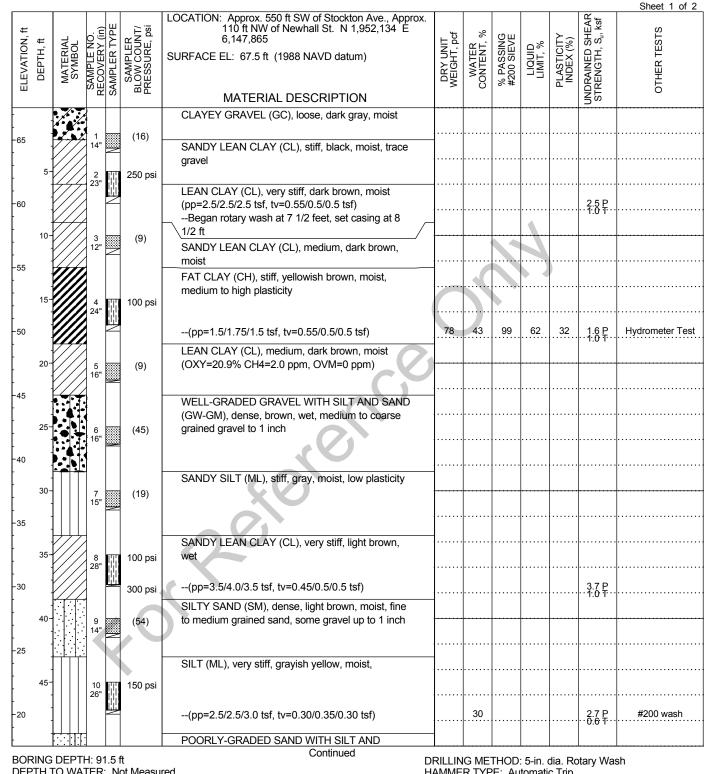
SVRT BORING LOG 011108 2::TUGENERALIUSERSUAN_AKGINTSVRT_PHASE 2_050208.GPJ TEST LIBRARY-DOWNTOWN_PARIKIL_01_02_08.GLB 5/5/08 09:50 a

BORING DEPTH: 101.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 23, 2007 COMPLETION DATE: July 24, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.


DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: G. Tripathi/R. Vedantham CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-95


NOTES: 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-95

Silicon Valley Rapid Transit Project San Jose, California

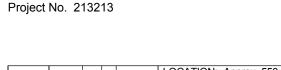
See Gisclaimer on cover page.

BORING DEPTH: 91.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 11, 2007 COMPLETION DATE: June 11, 2007 DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: L Bhangoo/R Vedamtham

NOTES: 1. Terms and symbols defined on Plate A-1.


LOGGED BY: L Bhangoo/R Vedamthan CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.



LOG OF BORING NO. BH-97

Silicon Valley Rapid Transit Project San Jose, California

SVRT BORING LOG 011108 Z:TUGENERALUSERSUAN_AIGINTSVRT_PHASE 2_050208.GPJ TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08 09:50.

ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	LER TYPE	AMPLER DW COUNT/ ESSURE, psi	LOCATION: Approx. 550 ft SW of Stockton Ave., Approx. 110 ft NW of Newhall St. N 1,952,134 E 6,147,865 SURFACE EL: 67.5 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	LASTICITY INDEX (%)	INED SHEAR IGTH, S., ksf	Sheet 2 or SLS SLS SLS SLS SLS SLS SLS SLS SLS SL
ELEV	B	M⊳	SAN	SAMPLER	SA BLOV PRES	MATERIAL DESCRIPTION	ADF MEI	S CO	#20		PLA	UNDRAINED STRENGTH,	OTH
·15			· 11 · 13"		(86)	GRAVEL (SP-SM), very dense, grayish brown, moist, coarse grained sand, gravel up to 3/4 inch		10				·	
	55-		12 5"		(52/4 1/2")	WELL-GRADED GRAVEL WITH SILT AND SAND (GW-GM), very dense, gray, moist to wet, gravel up to 1 inch							
10	60-		13 10"		(50/4 1/2")	SILTY SAND WITH GRAVEL (SM), very dense, brown, wet, medium to coarse grained sand							
5													
	65-		14 12"		(79)	WELL-GRADED SAND WITH SILT (SW-SM), very dense, gray, moist, subangular gravel in the slough up to 2 1/2 inches							
0	70-		15 10"		(66/6")	CLAYEY GRAVEL WITH SAND (GC), very dense, gray, moist, coarse grained gravel up to 1 inch							
-5						SANDY LEAN CLAY (CL), stiff, yellowish brown,							
	75-		16 11"		350 psi	wet, fine grained sand, low plasticity (pp=1.5/1.25/1.75 tsf, tv=0.65/0.95/0.95 tsf)						···· <u>1.5 P</u> ··· 1.7 T	
-10	80-		17		(83)	WELL-GRADED GRAVEL WITH SILT AND SAND (GW-GM), very dense, brown, moist, coarse grained gravel 1/2 inch to 2 inches							
-15			12"		(03)								
	85-		18 10"		(63/6")	WELL-GRADED GRAVEL (GW), very dense, gray, wet, coarse grained gravel from 1/2 inch to 2 inches							
-20								6	1				
	90-		19 11"		(21)	CLAYEY GRAVEL (GC), medium dense, gray,	 						
-25		-		K		\moist (OXY=20.9%, CH4=0 ppm, OVM=0 ppm)							
20	95-	-											
-30		-											

BORING DEPTH: 91.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 11, 2007 COMPLETION DATE: June 11, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: L Bhangoo/R Vedamtham CHECKED BY: F. Wang

Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

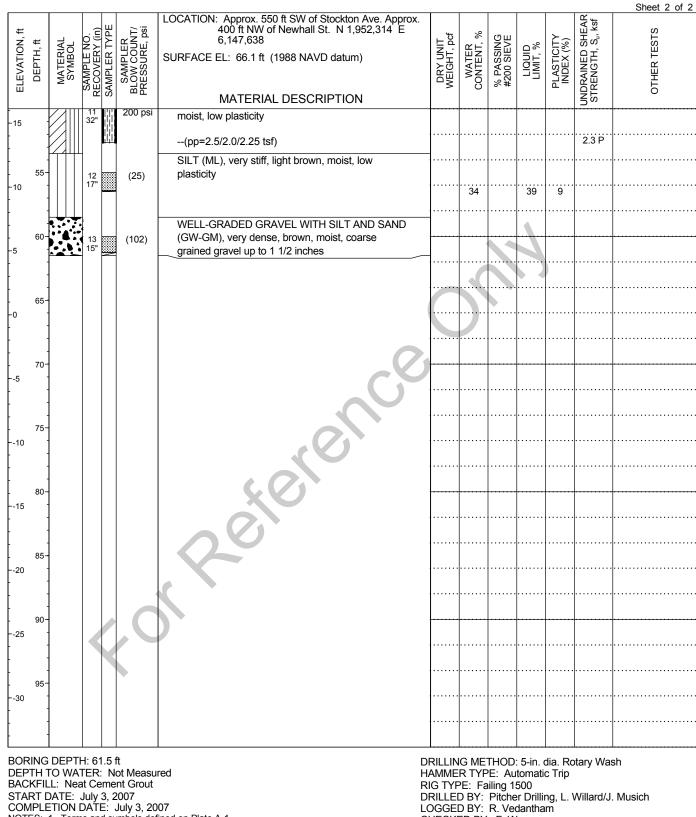
LOG OF BORING NO. BH-97

Silicon Valley Rapid Transit Project San Jose, California

Sheet 2 of 2

ft				~	ш	si 7	LOCATION: Approx. 550 ft SW of Stockton Ave. Approx. 400 ft NW of Newhall St. N 1,952,314 E						SHEAR , S _u , ksf	Sheet 1 of ഗ
JN, f	ĻĦ	ΙAL	Ч	NO.	SAMPLER TYPE	SAMPLER LOW COUNT/ RESSURE, psi	6,147,638	DRY UNIT WEIGHT, pcf	л. Н.	% PASSING #200 SIEVE	%۵	PLASTICITY INDEX (%)	SHE SHE	OTHER TESTS
ATIC	DEPTH,	MATERIAL	MBO	SAMPLE NO RECOVERY (i	ER	APLI SUR	SURFACE EL: 66.1 ft (1988 NAVD datum)	12 E	WATER CONTENT,	ASSI	LIQUID LIMIT, %	EX (C ED	R TE
ELEVATION,	DE	MA	S		MPL	SAN BLOW PRES		NEIO	NO	% P/		IND	RAII	벁
Ξ				s H	SA	ВĘ	MATERIAL DESCRIPTION		0	0.14			UNDRAINED STRENGTH,	0
65		-					SANDY SILT WITH GRAVEL (ML), stiff, brown,							
		-		1		(14)	moist, coarse grained sand							
				6"	K									
	5	\cdot		2	614	225 psi	LEAN CLAY (CL), stiff, grayish brown, moist, low							
60				2 10"			plasticity (pp=1.5/1.75/2.0 tsf, tv=0.6/0.45/0.4 tsf) (OXY=21%, CH4=0 ppm, OVM=0 ppm)							
		\mathbb{V}			Н								1.8 P 1.0 T	
		Í	ÍIÍ				Began rotary wash, set casing to 8 1/2 ft							
55	10	-	Ш	3 13"		(7)	ELASTIC SILT (MH), medium, dark mottled bluish brown, moist, medium to high plasticity							
55		-	Ш		\geq		2.0,	. 86	. 36		60	27		
		-	Ш											
	15			4		125 psi	SILTY CLAY (CL-ML), stiff, grayish brown, moist,							
50				30"		125 psi	medium plasticity (pp=1.5/2.0/1.75 tsf, tv=0.3/0.4/0.35 tsf)	.						
					<u>li li</u>								1.8 P	
		\square	//			·	LEAN CLAY (CL), soft, light gray, moist						0.7 1	
	20	1//		5 15"		(5)		·	+					•••••
45				15				ĺ						
		$\langle \rangle$												
	25					100					• • • • • • • •			
40	20	$\langle \rangle$		6 26"		100 psi	medium, dark brown, low plasticity							
					ÿ		(pp=0.5/1.0/0.75 tsf, tv=0.2/0.35/0.3 tsf)						0.8 P ••0.6 T ••	
		K	4					_					0.6.1	
	30	-//		7 16"		(8)	SILTY CLAY (CL-ML), medium, gray, moist, low plasticity				• • • • • • • •			•••••
35				16"	**		producty							
	25						SANDY SILT (ML), gray, moist, fine grained sand							
30	35			8 32"		200 psi								
		-							22	51				Hydrometer Tes
													•••••	
	40	-		9		(70)	SILTY SAND (SM), very dense, light brown and gray, moist, fine to medium grained				• • • • • • • •			
25				15"			gray, moisi, line to medium graineu	105	22	21				Hydrometer Tes
			/		М		SILTY CLAYEY GRAVEL (GC), medium dense,							
			/	l			coarse grained lost drilling fluid at 45 feet (30 gallons)							
20	45	1	7	10 12"		(25)	LEAN CLAY (CL), very stiff, yellowish brown, moist	-						
20		\mathbb{V}			\square				31	90				Hydrometer Tes
		K					SILTY CLAY (CL-ML), very stiff, grayish brown,						•••••	
		V/					Continued					l		

BORING DEPTH: 61.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 3, 2007 COMPLETION DATE: July 3, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.


DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip

LL: Neat Cement Grout DATE: July 3, 2007 ETION DATE: July 3, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-98

NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham

 Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

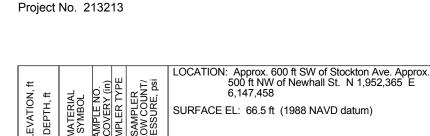
LOG OF BORING NO. BH-98

													Sheet 1 of 2
ELEVATION, ft	MATERIAI	SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 600 ft SW of Stockton Ave. Approx. 500 ft NW of Newhall St. N 1,952,365 E 6,147,458 SURFACE EL: 66.5 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
65			1 16"		(22)	FAT CLAY WITH SAND (CH), stiff, black, dry to moist, medium to high plasticity, trace fine grained sand (OXY=21.8%, PID=0 ppm)							
60	5-		2 32"		150 psi	LEAN CLAY (CL), stiff, grayish black, moist, medium plasticity (pp=1.5/1.5/0.5 tsf, tv=0.5/0.7/0.7 tsf)						 13P	
						Began rotary wash, set casing at 8 1/2 ft		••••	•••••			. 1.3 ₽ ··1.3 T···	• • • • • • • • • • • • • • • • • • • •
•55	10-		3 12"		(9)	medium, dark gray							
)		
	15-		4 28"	l¦I¦I	125 psi								
50			28"			SILT (ML), stiff, gray, moist to wet, low plasticity, trace fine grained sand (pp=1.5/1.25/1.0 tsf, tv=0.2/0.3/0.35 tsf)				•••••			
2 45	20-		5 18"		(8)	FAT CLAY (CH), medium, dark gray and black, moist, high plasticity							
	Y	Ψ				color changed to brown at 23 feet LEAN CLAY (CL), medium to stiff, yellowish brown,							
2 40	25-		6 29"		125 psi	wet, low plasticity							
				li li l		(pp=0.75/1.2/1.0 tsf, tv=0.5/0.35/0.65 tsf)		•••••		•••••		1.0 P •• 1.0 T ••	•••••
	30-		7 18"		(0)	SANDY LEAN CLAY (CL), very soft, light gray, moist to wet							+
35	\mathbb{P}					LEAN CLAY (CL), stiff, yellowish brown, moist		27	. 61	27	. 11		
	35-							•••••		•••••			••••••
30			8 29"		75 psi			•••••		•••••			•••••
					4	(pp=1.7/2.2/2.0 tsf, tv=0.5/0.45/0.5 tsf)		•••••		•••••		2.0 ₽ 1.0 T…	
4	40-		9		(8)					•••••			
25			18"			medium, light gray, low to medium plasticity				•••••			
2	45-		10 28"	li ii	190 psi	SILTY SAND (SM), gray, wet, fine to medium		•••••					
20						grained	107	. 20	. 27				Hydrometer Tes

BORING DEPTH: 81.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 29, 2007 COMPLETION DATE: June 29, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip

LL: Neat Cement Grout DATE: June 29, 2007 ETION DATE: June 29, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.



LOG OF BORING NO. BH-99

Silicon Valley Rapid Transit Project San Jose, California

Shoot 1 of 2

ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	500 ft NW of Newhall St. N 1,952,365 E 6,147,458 SURFACE EL: 66.5 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHE≜ STRENGTH, S _u , ks	OTHER TESTS
- -15			11 18"		(21)	LEAN CLAY (CL), stiff, gray, wet						0.8 P	
- - -10	- 55- - -		12 31"		100 psi	SANDY LEAN CLAY (CL), very stiff, yellowish brown, moist, trace gravels (pp=2.5/2.65/2.0 tsf, tv=0.7/0.65/0.7 tsf)		20				2.4 P 1.4 T	
- - -5 -	-60 - -		13 12"		(58/6")	WELL-GRADED GRAVEL WITH SAND (GW), very dense, grayish brown, wet, subrounded gravel up to 1 1/2 inches)		
- - -0 -	65- - -		14 16"		(112)	POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), very dense, grayish brown, wet, subangular gravel up to 1 1/2 inches		10	5				Hydrometer Test
- - 5 -	-70 -		15 16"		(67)	dense, subangular gravel up to 1 inch							
- - 10	- 75-		16 18"		(70)	WELL-GRADED SAND WITH SILT AND GRAVEL (SW-SM), dense, brownish gray, wet, subangular gravel up to 1 inch lost drilling fluid at 76 feet		10	7				
- - 15	-80 -80		17 18"		(114)	very dense							
- - 20	- 85- -					Ro							
- - 25	90- - 90				Ċ								
- - 30	- 95- -												
					ft of Measu	D	RILLIN			: 5-in. (dia. Ro	otary Was	sh

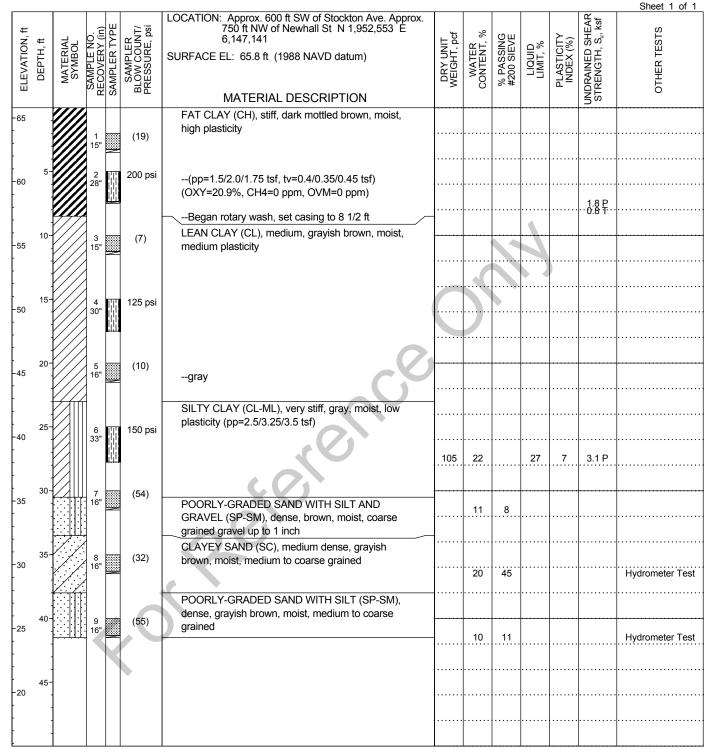
BACKFILL: Neat Cement Grout START DATE: June 29, 2007 COMPLETION DATE: June 29, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

паистпр RIG TYPE: Failing 1500

DATE: June 29, 2007 ETION DATE: June 29, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-99

Silicon Valley Rapid Transit Project San Jose, California



Sheet 2 of 2

EAR ksf

TEST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08 09:51 a

SVRT BORING LOG 011108 Z:/TUGENERAL/USERS/JAIN_A/GINT/SVRT_PHASE 2_050208.GPJ

BORING DEPTH: 41.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: July 3, 2007 COMPLETION DATE: July 3, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-100

		1					1	1				~	Sheet 1 o
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)		SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 700 feet NW of Las Plumas Ave., 10 feet NE of UPRR tracks N 1,956,655 E 6,162,937 SURFACE EL: 90.8 ft (1988 NAVD datum) MATERIAL DESCRIPTION	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
90						Cored through 8 inches of ballast (OXY=20.9%,				•••••			
		//	1		(30)	CH4=110 ppm, PID=0 ppm)							
		/ /	16"		(30)	CLAYEY SAND WITH GRAVEL (SC), medium							
	5-					dense, brown, moist, some angular gravel up to 1		•••••		••••	••••	•••••	
35			2 12"	\mathbb{N}	(9)	POORLY-GRADED GRAVEL WITH SILT AND			5				
	•					SAND (GP-GM), loose, gray, moist, some angular							
						\gravel up to 1 1/2 to 2 inches/ SILT (ML), medium, brown, moist, trace sand							
80	10-		3 27"	UN.	150 psi	(pp=0.5/0.5/0.75 tsf, tv=0.2 tsf)						••••••	
			-			Began rotary wash, set casing to 8 1/2 ft							
												0.6 P 0.4 T	
	15-		4	цц.	200 psi	LEAN CLAY (CL), very stiff, brown, moist							
75			28"			(pp=2.0/2.25/2.25 tsf, tv=0.8 tsf)				•••••		•••••	
				<u></u>								<u>2.2 P</u>	
						FAT CLAY (CH), medium, brown, moist, medium to high plasticity (pp=0.5/0.5/0.5 tsf) (OXY=20.9%,							
0	20-		5 26"		200 psi	CH4=15 ppm, PID=0 ppm) (disturbed sample from							
						second attempt)	81	41		52	25	0.5 P	
										•••••			
65	25-		6 23"		50 psi	LEAN CLAY (CL), stiff, brown, wet, low plasticity							
						(pp=1.5/2.0/2.0 tsf, tv=0.7 tsf)						1.8 P	
												···1:4 [.] T····	
60	30-		7	RH.	180 psi					•••••			•••••
00	•		25"			gray (pp=2.0/2.0/1.5 tsf, tv=0.5 tsf)							
]									1.8 P 1.0 T	
	35-				100 poi			•••••		• • • • • • • •		•••••	
5			8 28"		190 psi	very stiff, yellowish gray (pp=2.25/2.25/2.25 tsf,						·····	
				Ш		tv=0.8 tsf)	107	21		. 31	. 12		
50	40-		9 28"	釄	180 psi	stiff, brown (pp=2.0/1.5/1.5 tsf, tv=0.65 tsf)	•••••		•••••	•••••			
			1			(OXY=20.9%, CH4=15 ppm, PID=0 ppm)						17P	
			1	\mathbb{N}								1.7 P 1.3 T	
5	45-		10		190 psi								
15		///	22"	Ü		(pp=2.0/2.0/2.0 tsf, tv=0.75 tsf)	• • • • • • •	•••••		•••••	•••••	·····	
			1	H								- 2.0 P - 1.5 T	
		ĽШ	1			SANDY SILT (ML), very stiff, brown, moist,							
_	_	DEPT			n	Continued						tary Wasl	L

START DATE: June 4, 2007 COMPLETION DATE: June 4, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DATE: June 4, 2007 ETION DATE: June 4, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information places afor to piperset at the time of drilling that are used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-101

ELEVATION. ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in) SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: Approx. 700 feet NW of Las Plumas Ave., 10 feet NE of UPRR tracks N 1,956,655 E 6,162,937 SURFACE EL: 90.8 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
				200 psi	MATERIAL DESCRIPTION						50	
-40	-		11 27"	200 p3	increasing sand at the bottom (pp=3.0/3.5/3.5 tsf, tv=0.45 tsf)							
	-			1		• • • • • • • •	• • • • • • • •		• • • • • • • •		3.3 P 0.9 T	
-	-										0.91	
-	55-											
-35	-					• • • • • • • •			• • • • • • • •		• • • • • • • • • • • •	
-	-											
ŀ	-											
-30	60-										•••••	
-	-											
-	-											
Ī	-										• • • • • • • • • • •	••••••
-25	65-											••••••
-	-											
[-											•••••
-	- 70											
-20	-											
	-					• • • • • • • •	• • • • • • • •				• • • • • • • • • • • •	
-	-											
	75-											
-15	-					•••••	• • • • • • • •				• • • • • • • • • • • •	
-	_											
-	-											
-10	80-					•••••	•••••	•••••	•••••		•••••	•••••
-	-											
-	-											
	- 85-					• • • • • • • •	• • • • • • • •		• • • • • • • •		• • • • • • • • • • • •	
-5	- 65											
ſ	-											
	-					•••••	• • • • • • • •		• • • • • • • •			
-	90-											
-0	-											
[-						• • • • • • • •				• • • • • • • • • • • •	
ŀ	-											
_	95-			Ť								
5 -	-					•••••	• • • • • • • •		• • • • • • • •		• • • • • • • • • • •	••••••
-	-											
-	-											
				н Н					. .		4	
			H: 52.5	ii Iot Measu	rod UI				. J-IN. (tomoti	ula. KC o Trin	tary Was	511

:R: Not BACKFILL: Neat Cement Grout surea START DATE: June 4, 2007 COMPLETION DATE: June 4, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: L Bhangoo/R Vedamtham

 Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-101

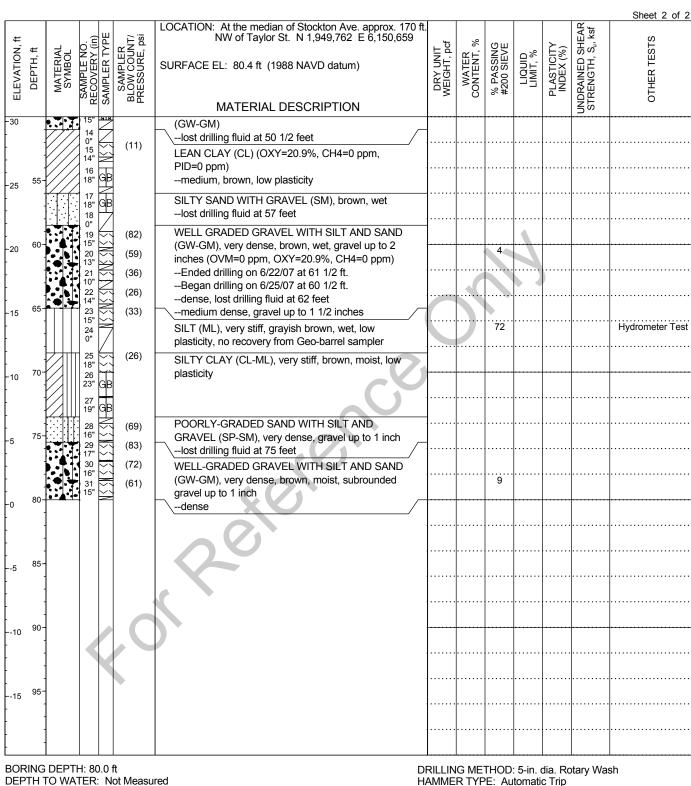
Silicon Valley Rapid Transit Project San Jose, California

Sheet 2 of 2

SVRT BORING LOG 011108 Z:/TUGENERAL/USERSUAIN_A/GINT/SVRT_PHASE 2_050208.GPJ TESTLIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08 09:51 a

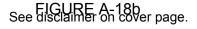
Project No. 213213

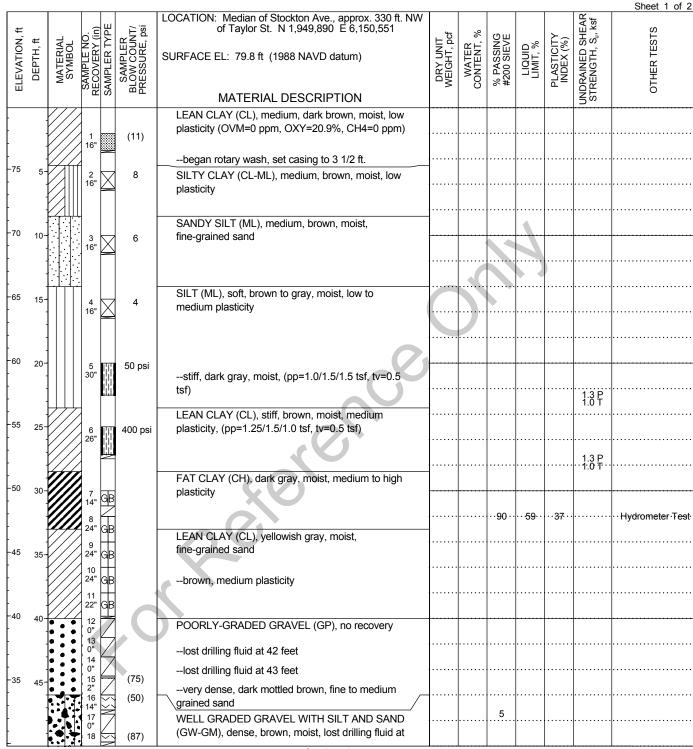
t				ш	, is	LOCATION: At the median of Stockton Ave. approx. 170 ft. NW of Taylor St. N 1,949,762 E 6,150,659						EAR ksf	Sheet 1 of 2
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 80.4 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
ш			<u> </u>	S	ᄪᅀ	MATERIAL DESCRIPTION						STI	0
80	-		1 18"		(28)	POORLY-GRADED SAND WITH SILT AND GRAVEL (SP-SM), medium dense, brown to gray, moist, gravel up to 1 inch, medium grained sand (FILL)							
75	5-		2 18"	\boxtimes	19	Begin rotary wash, set casing to 3 1/2 ft							
	-	K (A)				lost drilling fluid at 7 1/2 feet							
70	- 10-		3 18"	\boxtimes	27	WELL-GRADED GRAVEL WITH SILT AND SAND (GW-GM), medium dense, brown, moist, gravel up to 1/2 inch, fine grained sand							
	-				20)		
65			4 18"	Х	30	increasing clay content							
60	20-		5 29"		50 psi	LEAN CLAY (CL), medium, gray, moist, low to medium plasticity, fine grained sand (pp=0.5/0.75/0.75 tsf, tv=0.25 tsf) Extended casing to 18 1/2 ft.							
	-							•••••				0.7 P 0.5 T	
55	25-		6 24"		500 psi	less sand (pp=0.75/0.75/1.0 tsf, tv=0.25 tsf)						 08P	Hydrometer Tes
50	- 30-		7			60				•••••		0.8 P ··0.5 T···	
	-		34" 8	GВ		dark brown and gray, low plasticity		•••••					
	-		29"	GВ		increasing sand							
45	35-					SILTY SAND (SM), fine grained							
	-		9 24"	GВ		SANDY SILT (ML), gray, moist, low plasticity, some sand		•••••					
10	40-		10 34"	GВ	,C	LEAN CLAY (CL), gray, moist, low plasticity							
	-		11 45"	GB									••••••
35	45-		12		Ý								
	-	L.	33"	GВ		SILTY SAND (SM), fine sand							
	_		13			WELL-GRADED GRAVEL WITH SILT AND SAND			7				


DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 22, 2007 COMPLETION DATE: June 25, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL

DATE: June 22, 2007 ETION DATE: June 25, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-102




BACKFILL: Neat Cement Grout START DATE: June 22, 2007 COMPLETION DATE: June 25, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL DRILLED BY: Pitcher Drilling, R. Medina/A. Bazan LOGGED BY: G. Tripathi/O. Gouthier CHECKED BY: F. Wang

 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

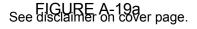
LOG OF BORING NO. BH-102

Continued

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL DRILLED BY: Pitcher Drilling, R. Medina/A. Bazan LOGGED BY: G. Tripathi/O. Gouthier CHECKED BY: F. Wang

NOTES: 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

BORING DEPTH: 90.5 ft


DEPTH TO WATER: Not Measured

COMPLETION DATE: June 27, 2007

BACKFILL: Neat Cement Grout

START DATE: June 20, 2007

LOG OF BORING NO. BH-103

						LOCATION: Median of Stockton Ave., approx. 330 ft. NW				A 10	Sheet 2 of
ELEVATION, ft	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	of Taylor St. N 1,949,890 E 6,150,551	% FASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S., ksf	OTHER TESTS
ЕГЕ		₹°	RECO	SAMI	BLOS		#5 *		PL	NDR4	ОТН
			8"			MATERIAL DESCRIPTION				50	
			19 10"	\leq	(39)	46 1/2 feet lost drilling fluid at 48 feet (OVM=0 ppm,					
	-		20 18"	\mathbb{Z}	(14)	☐ OXY=20.9%, CH4=0 ppm)		• • • • • • •			
		<u>K / / / / / / / / / / / / / / / / / / /</u>	21	ĞΒ		-very dense, mottled brown, subangular and					
25	55-		22	1 T	(42)	Subrounded gravel up to 2 inches	65	NP	NP		
	-	•••	16" 23	\geq	(74)	Lorendard drilling on 6/20/07 of 52 ft					
			15" 24	\geq	(66)	Ended drilling on 6/20/07 at 52 ft.					
			14"	\sim		LEAN CLAY (CL), stiff, light gray, low plasticity, fine					
20	60-		25 10"	N N	(87/11")	grained sand at bottom				•••••	•••••
	-	• • • • • •	26	\leq	(62)	SANDY SILT (ML), gray, medium grained, lost					
		•	27	K	(55)	drilling fluid at 54 feet	3)		
			11" 28	Ž	(85)	WELL-GRADED GRAVEL WITH SAND (GW),					
15	65-		12"	Ž	(00)	dense, browm, moist, medium grained, sand and					
	-	1	29 0"			gravel up to 1/2 inch		• • • • • •			•••••
	-					POORLY-GRADED SAND WITH GRAVEL (SP),					
	-		30 0"		1	Very dense, medium grained, gravel up to 3/4 inch WELL-GRADED SAND WITH GRAVEL (SW), very					
10	70-	$\left\{ \left \right\rangle \right\}$		Ĺ		dense, grayish brown, moist, medium grained,					
	-	1	31	\geq	(29)	gravel up to 3/4 inch					
		1	32 35"	Ť		lost drilling fluid at 60 feet	55 · · ·	• • • • • • •			···Hydrometer·T
				GΒ		dense, lost drilling fluid at 61 1/2 feet					
5	75-		33	Ř	(23)	dense, gravel up to 1 1/2 inches, lost drilling fluid					
			18"	\simeq	, í	at 63 feet -lost drilling fluid at 64 1/2 feet	•••••	• • • • • •			•••••
			34	GB		SANDY SILT (ML)	13				
			6"	\angle	(50/5")	medium, gravish brown, fine-grained sand					
0	80-		35	\geq	(98)	SILTY SAND (SM), medium dense, grayish brown,				• • • • • • • • • • • • •	
			36 16"		(00)	moist, gravel up to 1 1/2 inches					
		•••	37		(73)	very dense (OVM=0 ppm, OXY=20.9%, CH4=0 /		• • • • • • •	••••		•••••
			15"	\sim	(10)	ppm)	.4				
5	85-		38		(28)	WELL-GRADED SAND WITH GRAVEL (SW), very					
	-	777	9"	\geq		dense, brown, gravel up to 1 1/2 inches, medium					
	-	\mathbb{Z}	39 22"	間	1500 psi	☐ grained sand ☐Ended drilling on 6/21/07 at 80 1/2 ft				>4.5 P	
							 52	 NP	NP		
10	90-		40 13"		(72)	POORLY GRADED GRAVEL WITH SAND (GP),					
						dense, brown, moist					
		-				medium dense		•••••	•••••		
	-	1				LEAN CLAY WITH SAND (CL), hard, brown					
-15	- 95-	1				(pp=>4.5 tsf)		• • • • • • •			
		-				SANDY SILT (ML), hard, brown, moist, some sand,					
	-	-				low plasticity					
			1	1	1	hard, low plasticity					1

BORING DEPTH: 90.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 20, 2007 COMPLETION DATE: June 27, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL

DATE: June 20, 2007 ETION DATE: June 27, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-103

Project No.	213213	

		1					1	1					Sheet 1 of
TION, ft	DEPTH, ft	MATERIAL SYMBOL	LE NO. ERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	LOCATION: NE side of Santa Clara Street, approx. 30 feet SE of 1st Street N 1,947,855 E 6,157,321 SURFACE EL: 86.9 ft (1988 NAVD datum)	DRY UNIT WEIGHT, pcf	TER ENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	ED SHEAR TH, S _u , ksf	OTHER TESTS
ELEVATION,	DEP	MATH SYN	SAMPLE NO. RECOVERY (ir	SAMPLE	BLOW PRESS		DRY WEIG	WATER CONTENT,	% PA #200		PLAS'	UNDRAINED (STRENGTH,	OTHER
					- 4	MATERIAL DESCRIPTION						N S	
		97				11 inches of ASPHALT CONCRETE							
-85			1		(13)	SANDY LEAN CLAY (CL), stiff, brown, moist, low plasticity							
-80	5-		2 19"		400 psi	SILT WITH GRAVEL (ML), brown, moist, low plasticity							
						WELL-GRADED SAND WITH SILT AND GRAVEL							•••••
	10-		3 10"		(32)	(SW-SM), medium dense, brown, wet, coarse grained up to 3/4 inch		8	12				
-75						LEAN CLAY (CL), medium, dark gray, moist, medium plasticity		•					
	15-		4		150 psi								
70			30"			(pp=0.5/0.25/0.25 tsf, tv=0.4/0.45/0.35 tsf)						···0.3 P··· 0.8 T	
						0							
	20-		5 30"		100 psi	trace fine grained sand (pp=1.0/1.0/0.5 tsf,							
65			6		8	tv=0.3/0.35/0.4 tsf)						0.8 P ··0.7 T···	
			14"	\bowtie	0	SILTY SAND (SM), loose, black, moist, fine-grained		27	50	··NP··	··N₽··		
	25-		7		50 psi								
60						50	84	35	34	NP	NP		
			8 18"	X	14	medium dense, wet							
	30-		9 30"		100 psi								•••••
55			10 10"		0	LEAN CLAY (CL), medium, gray, moist, low to medium plasticity (pp=0.75/.075/0.75 tsf,	•••••	32	45	29	10	0.8 P 1.0 T	
	35-		11	111	40 psi								
50			34"		•	CLAYEY SAND (SC), very loose, gray, wet,							• • • • • • • • • • • • • • • • • • • •
			12	\mathbb{X}	10	LEAN CLAY (CL), medium, mottled brown, moist,						0.6 P ··0.8 T···	
	40-		13		27	low plasticity, trace fine grained sand and root (pp=0.5/0.75/0.5 tsf, tv=0.35/0.4/0.4 tsf)		65	48	86	24		
45			9"	P		SILTY SAND (SM)/SANDY ORGANIC SILT (OH),		13	10				
				X		\medium dense, gray with reddish brown, moist, trace rotten root and organic material							
	45-		14	\vdash	0	WELL-GRADED SAND WITH SILT AND GRAVEL							
-40			18"	Å		(SW-SM), medium dense, dark gray, wet, coarse-grained		•••••		•••••		•••••	
						SILTY CLAY (CL-ML), very soft, light brown, wet,							
						low plasticity					l	L	
					-	Continued				· E in			

BORING DEPTH: 51.5 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 23, 2007 COMPLETION DATE: June 23, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham

 Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

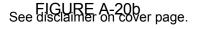
LOG OF BORING NO. BH-105

EST LIBRARY-DOWNTOWN_PARIKH_01_02_08.GLB 5/5/08 09:52 a	
SVRT BORING LOG 011108 Z:\TUGENERAL\USERS\JAIN	

LOCATION: NE side of Santa Clara Street, approx. 30 feet SE of 1st Street N 1,947,855 E 6,157,321 UNDRAINED SHEAR STRENGTH, S_u, ksf SAMPLE NO. RECOVERY (in) SAMPLER TYPE SAMPLER BLOW COUNT/ PRESSURE, psi ELEVATION, ft DRY UNIT WEIGHT, pcf OTHER TESTS % % PASSING #200 SIEVE PLASTICITY INDEX (%) MATERIAL SYMBOL DEPTH, ft WATER CONTENT, LIQUID LIMIT, % SURFACE EL: 86.9 ft (1988 NAVD datum) MATERIAL DESCRIPTION 15 15" 4 \mathbb{X} --soft, light brown 35 55 -30 60 -25 65 ·20 70 seren ·15 75 -10 80 -5 85 90 -5 95 -10 BORING DEPTH: 51.5 ft DRILLING METHOD: 5-in. dia. Rotary Wash DEPTH TO WATER: Not Measured HAMMER TYPE: Automatic Trip RIG TYPE: Failing 1500 BACKFILL: Neat Cement Grout START DATE: June 23, 2007 COMPLETION DATE: June 23, 2007

Project No. 213213

NOTES: 1. Terms and symbols defined on Plate A-1.


DRILLED BY: Pitcher Drilling, L. Willard/J. Musich LOGGED BY: R. Vedantham

 Terms and symbols defined on Plate A-1.
 CHECKED BY: F. Wang
 Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-105

Silicon Valley Rapid Transit Project San Jose, California

Sheet 2 of 2

	T					LOCATION: SW side of Stockton Ave., approx. 150 ft NW						۲.	Sheet 1 o
ŧ			1.2	Ш	NT/	of Asbury St. N 1,950,038 E 6,150,410	<u> </u>					SHEAR , S _u , ksf	Ś
ź	Ŧ.	MATERIAL SYMBOL	XΟ.	Σ	щЧΩщ	·	DRY UNIT WEIGHT, pcf	% 1~~	% PASSING #200 SIEVE	0%	¥≦	Ъ °	IST
Ĕ	DEPTH, ft	1BC	ШĤ	L R	LC PLE	SURFACE EL: 78.3 ft (1988 NAVD datum)	SF	ΞĽ	SSI	LIQUID LIMIT, %	EX.	ΠĘ	Ë
A N	Ш	₽Z		PLE	SS		Y2⊡	₹₽	A00	SE 1	AS'		ЩЦ Ц
ELEVATION,		Σŋ	SAMPLE NO. RECOVERY (ir	SAMPLER TYPI	SAMPLER BLOW COUNT/ PRESSURE, psi		۵Ň	WATER CONTENT,	#%		PLASTICITY INDEX (%)	REI	OTHER TESTS
_				S	шц	MATERIAL DESCRIPTION						UNDRAINED (STRENGTH,	0
	K	.	1			\frown 6 inches of ASPHALT CONCRETE (OVM=0 ppm, /-							
		ÌM			(16)	─\\OXY=20.8%, CH4=0 ppm)							
'5			9"		(10)	SANDY LEAN CLAY (CL), brown, dry (FILL)							
5	ľ					TAT CLAY (CH), stiff, dark brown, dry to moist, high		• • • • • • • •					• • • • • • • • • • • • • • • • • • • •
	5-		2	63	1000 psi	plasticity							
	-		30"	ЦH		Began rotary wash, set casing to 3 1/2 ft.	• • • • • • •	••••		• • • • • • •	• • • • • • •	•••••	
	1			1111		SANDY SILT (ML), very stiff, light brown, dry, trace							
70]					fine grained sand, non-plastic							
	10-		3	m	100 psi	LEAN CLAY (CL), stiff, light brown, moist, low							
	ł		30"	間	100 p31	plasticity		4					
	ł		1	l¦l¦l		(pp=1.5/1.75/1.5 tsf, tv=0.25/0.50/0.125 tsf)						15P	• • • • • • • • • • • • • • • • • • • •
65	ť	///	1			(pp=1.3/1.73/1.3 tai, tv=0.23/0.30/0.123 tai)						1.5 P 0.6 T	
	†	ſΓ	1			SANDY SILT (ML), very stiff, light brown, moist,				• • • • • • •			
	15-		4 24"		400 psi	non-plastic (pp=3.0/3.5/3.5 tsf)	l						
	_		24	ш									
60	-											3.3 P	
	ł					LEAN CLAY (CL), very stiff, black, moist, medium							
	20-		5	01	400 psi	plasticity		• • • • • • • •		•••••			•••••
	ł		27"	出出		plasticity							
	Í			5		brown, (pp=2.0/1.5/2.0 tsf, tv=0.75 tsf)		••••		31	14	2.1 P 1.5 T	• • • • • • • • • • • • • • • • • • • •
55	ł		1									1.5 1	
	25-		6	шu	400 psi								
	ł		30"	出出	400 p3i			• • • • • • •					
	ł		1	Ш		stiff (pp=1.5/2.0/1.5 tsf, tv=1.1 tsf)						1.7 P	
50	ť	///	1				• • • • • • •	••••		• • • • • • •	•••••	1.7 P ··2.3 T···	
	30-		1			6.07							
	307		7 36"	\square		black, trace fat clay pocket at depth 30 feet							
	ł		1	GΒ		trace organic material, lost drilling fluid at 33 feet							
15	ł		8	$\left + \right $									
-	ł		34"	GB		gray, low plasticity		• • • • • • • •		• • • • • • •		••••••	••••••
	35-												
	1		9 19"	GВ				•••••		• • • • • • • •			
]			H									
10	ł		10	А									
	40-		30"	GB		brown moint to wat		• • • • • • •		•••••			
	ł		1.			brown, moist to wet							
		•••	10"	GB		POORLY-GRADED GRAVEL WITH SAND (GP),		• • • • • • • •	······			····· ·	••••••
5			12	GΒ		medium dense, brown, wet, angular gravel up to 2 inches			4				
	45		13	\bowtie	(50)	medium grained sand							
			10"			more medium grained sand							•••••
			9"	μB									
			15	\sum	(64)	WELL-GRADED GRAVEL WITH SAND (GW), very						· · · · · · · · · · · · ·	
30													

BORING DEPTH: 90.0 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 26, 2007 COMPLETION DATE: June 27, 2007 NOTES: 1. Terms and symbols defined on Plate A-1. DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL

DATE: June 26, 2007 ETION DATE: June 27, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

SVRT BORING LOG 011108 2::TUGENERALIUSERSUAN_AKGINTSVRT_PHASE 2_050208.GPJ TEST LIBRARY-DOWNTOWN_PARIKIL_01_02_08.GLB 5/5/08 09:52 a

LOG OF BORING NO. BH-106

Project No. 213213	

ft			6	, щ	⊡. si	LOCATION: SW side of Stockton Ave., approx. 150 ft NW of Asbury St. N 1,950,038 E 6,150,410						EAR ksf	S
ELEVATION, 1	DEPTH, ft	MATERIAL SYMBOL	SAMPLE NO. RECOVERY (in)	SAMPLER TYPE	SAMPLER BLOW COUNT/ PRESSURE, psi	SURFACE EL: 78.3 ft (1988 NAVD datum)	WEIGHT, pcf	WATER CONTENT, %	% PASSING #200 SIEVE	LIQUID LIMIT, %	PLASTICITY INDEX (%)	UNDRAINED SHEAR STRENGTH, S _u , ksf	OTHER TESTS
Ш			S R	SA	田氏	MATERIAL DESCRIPTION		0	0.4+			STR	Б
			14" 17	M	(39)	lost drilling fluid at 49 feet	•••••						*****
25	•	•	6" 18 12"	N X	(47)	very dense, gravel up to 1 inch		•••••					
	55-		19 10"	\sum	(26)	brown, moist lost drilling fluid at 54 feet		• • • • • • • •					
		• •	20 6" 21	\mathbb{X}	(48) (21)	increasing fines		•••••					•••••
20			15" 22 5") E	(21)	SILT (ML), very stiff, dark gray, wet, low plasticity trace SILTY CLAY lense from 57 1/2 to 58 feet		•••••	90				Hydrometer Te
	60-			\square		gray	•••••						••••••
15	•		23 0"										
10	65-		24 17"	$\langle \rangle$	(21)	No recovery from Geo-barrel							
			25 6"	GB	(00)	WELL GRADED GRAVEL WITH SILT AND							••••••
10			26 18" 27	$\langle \langle \rangle \rangle$	(30) (39)	SAND(GW-GM), dark gray, wet SANDY SILT (ML), very stiff, brown, wet, gravel up			51	 NP	 NP		
	70-		18" 28 18"	×` GB	(00)	to 1/2 inch (OVM=0 ppm, OXY=20.9%, CH4=0							
			29		(30)	Ended drilling on 6/26/07 at 68 1/2 ft							••••••
5	75-			N -		in moist, trace gravel (OVM=0 ppm, OXY=20.9%,		•••••					
			30 30"	GВ		CH4=0 ppm)		•••••					
C			31			brown, moist, angular gravel		•••••					
	80-		0" 32 19"		(21)	SILTY CLAY WITH SAND (CL-ML), very stiff,		•••••					
	•		33 20"			SILT (ML), brown, moist LEAN CLAY (CL), brown, moist, trace organic		•••••					
5	85-			GB		materials (No recovery)					9		
	-00		34 12"	GB /		SILT (ML), very stiff, gray, moist		•••••					
10			35 22"	GВ		trace silty clay lense /		•••••					
	90-			Ł	C	LEAN CLAY (CL), gray, wet, low plasticity							
						SANDY SILT WITH GRAVEL (ML), yellowish brown, moist, round gravel up to 1 1/2 inches.							
15													
	95-												
20													
-20		-											


BORING DEPTH: 90.0 ft DEPTH TO WATER: Not Measured BACKFILL: Neat Cement Grout START DATE: June 26, 2007 COMPLETION DATE: June 27, 2007 NOTES: 1. Terms and symbols defined on Plate A-1.

DRILLING METHOD: 5-in. dia. Rotary Wash HAMMER TYPE: Automatic Trip RIG TYPE: Fraste XL

DATE: June 26, 2007 ETION DATE: June 27, 2007 1. Terms and symbols defined on Plate A-1. 2. Groundwater levels measured at the time of drilling may not be representative of actual groundwater conditions and should not be used for design purposes. For applicable groundwater information, please refer to piezometer and observation well data.

LOG OF BORING NO. BH-106

Appendix 2: Cone Penetration Test (CPT) Results

orReterence