

# Measuring <u>Succes</u>s:

Steps for a Healthier, Wealthier, more Equitable Future



# Presentation Outline

- Paradise LOSt: Why focus on LOS makes our cities poorer and more congested.
- Other approaches to LOS
- Case Study: Santa Monica





| Arterial Class      | I       | Π               | ŢIL   |
|---------------------|---------|-----------------|-------|
| level of<br>Service | Average | Travel<br>(MPH) | 5peed |
| A                   | ≥ 35    | ≥ 30            | ≥ 25  |
| В                   | ≥ 28    | ≥ 24            | ≥ 19  |
| С                   | ≥ 22    | ≥ 18            | ≥ 13  |
| P                   | ≥ 17    | ≥ 14            | 2 9   |
| E                   | ≥ 13    | 2 10            | ≥ 7   |
| F                   | < 13    | < 10            | < 7   |









### What's wrong with LOS?

- To be "conservative," transportation analyses typically use ITE trip generation rates, data from isolated, single-use projects with no access except by car.
- TODs typically generate ~50% fewer vehicle trips than predicted by ITE. ("Effects of TOD on Parking, Housing and Travel," TCRP 128, 2008)
- Guidelines focus on localized traffic impacts and ignores regional impacts.



### LOS Increases Congestion

- To mitigate a negative transportation impact:
  - Reduce density
  - Widen roadways
  - Transportation Demand Management
  - Move the project to a more isolated location with less existing traffic congestion
- Result: Less walking, biking and transit. Mitigation becomes a selffulfilling prophesy



NNELSCH 10





### How do we use Performance Measures?

- Improving efficiency of system operations
- Managing a given road or corridor
- Prioritizing funding
- Measuring impact of new development
- Imposing development fees
- Reporting to Congestion Management Agency
- Reporting on achievement of various goals

### What is transportation for?

- Transportation is not an end in itself
- It is merely a means by which we support individual and collective goals and objectives



NINGAARD 13

### **How Transportation Meets Goals**

### • Mobility:

- Can I travel freely and easily to where I want to go?
- Reduce roadway congestion
- Increase transit frequency, reliability and speed
- Create bicycle lanes and complete sidewalks

### • Accessibility

- Can I get the things and services I want?
- Bring people, goods and services closer together
- Mix uses
- Technology, delivery

NINGAARD 15

### Measure what matters

### Why not Consider...

- Economic Development
  - Job creation
  - Real estate value increase
  - Retail sales
- Quality of Life
  - Access to jobs
  - Access to shopping
  - Residential property value impact

- Social Justice
  - Do benefits accrue equitably?
  - Are investments spread equitably?
- Ecological Sustainability
  - VMT per capita (=CO<sub>2</sub>, NO<sub>x</sub>, runoff, etc.)
  - Land use/transportation connection



### Some performance measures

- Substitute *person* delay for *vehicle* delay
- Substitute *Quality* of Service for *Level* of Service
- All modes



NINGAARC 17

### Some performance measures

- <u>Transit:</u> Frequency, span of service, reliability, loading, speed
- <u>Automobile</u>: Average corridor travel time
- **<u>Bicycle:</u>** Bicycle Compatibility index
- <u>Pedestrian:</u> Perceived safety; Pedestrian environmental quality measures; Protected crossing frequency; Cumulative crossing delay





NINELSON 18

# <section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

| Pedestrian LOS    |                                                                                                                    |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                   |                                                                                                                    |  |  |  |  |
|                   |                                                                                                                    |  |  |  |  |
|                   | Sprinkle Consulting/FDOT Model                                                                                     |  |  |  |  |
| Ped LOS =         | :                                                                                                                  |  |  |  |  |
| -1.2021 li        | n (Wol + Wl + fp x %OSP + fb x Wb + fsw x Ws) + 0.253 In (Vol <sub>15</sub> /L) + 0.0005 SPD <sup>2</sup> + 5.3876 |  |  |  |  |
| where             |                                                                                                                    |  |  |  |  |
| Wol               | = Width of outside lane (feet)                                                                                     |  |  |  |  |
| WI                | = Width of shoulder or bike lane (feet)                                                                            |  |  |  |  |
| JP<br>X OCD       | = On-street parking effect coefficient (=0.20)                                                                     |  |  |  |  |
| %OSP              | = Percent of segment with on-street parking                                                                        |  |  |  |  |
| JD                | = Buffer area barrier coefficient (=5.37 for trees spaced 20 feet on center)                                       |  |  |  |  |
| VV D<br>faun      | = Bujjer wiath (distance between eage of pavement and sidewalk, jeet)                                              |  |  |  |  |
| JSW<br>Mc         | = Sidewalk presence coejjicient = 6 – 0.3WS<br>= Width of sidewalk (feet)                                          |  |  |  |  |
| Vol               | - avarage traffic during a fifteen (15) minute period                                                              |  |  |  |  |
| V01 <sub>15</sub> | - total number of (through) lanes (for road or street)                                                             |  |  |  |  |
| SPD               | = Average running speed of motor vehicle traffic (mi/hr)                                                           |  |  |  |  |
|                   |                                                                                                                    |  |  |  |  |
|                   |                                                                                                                    |  |  |  |  |
|                   |                                                                                                                    |  |  |  |  |
|                   |                                                                                                                    |  |  |  |  |
|                   |                                                                                                                    |  |  |  |  |
|                   | N <u>HELSON</u> 20                                                                                                 |  |  |  |  |





### Process

- Identify local values
- Identify long list of performance measures
- Refine into short list:
  - -Assess today's conditions
  - -Predict future conditions
  - -Evaluate projects
  - -Conduct EIRs
- Create tools and gather data
- Establish targets and thresholds
- Report back to public and Council
- Adopt impact fee

### **Start with Transportation Principles**

- Measure Success
- Management
- Streets
- Quality
- Public Space
- Environment

- Health
  - Affordability
  - Economy
  - Equity
  - Safety
  - Public Benefits

NINELSON 23

NILLSON 25

### **Creating a Shortlist**

- For each principle, a long list of potential measures and tools for measuring
- Next step: Short list:
  - Shortest list of measures that captures Santa Monica values
  - Minimize data collection costs
  - Maximize clarity
- Some measures, like per capita Vehicle Miles Traveled, capture many values: Greenhouse gases, congestion, air quality, etc.

| The Lon                                                                      | g List                   | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |   |                        |                    | _               |
|------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---|------------------------|--------------------|-----------------|
| Measure                                                                      | Cost/Time<br>Consumption | Implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EIR Pro<br>Rev |   | Corrid<br>or<br>Review | Repo<br>rt<br>Card | Travel<br>Model |
| MANAGEMENT                                                                   |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |   |                        |                    |                 |
| •Relative travel times by mode                                               | Medium                   | Can be modeled; see WeHo traffic model. Can also be collected<br>through data collection. Transit travel times can be automated in<br>GPS.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V              | V | V                      | V                  | V               |
| •Person capacity – walking,<br>bike, transit, auto, parking,<br>bike parking | Medium -<br>Heavy        | This is a GIS/Excel type function that can be included if there is<br>survey data available. Can be modeled. This needs to be further<br>defined.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | √?             |   | V                      |                    | √?              |
| -Transit LOS: productivity,<br>farebox return, delay,<br>reliability         | Medium -<br>Heavy        | This will take extensive model development if we want to get to this<br>level in the demand model. Direct ridership modeling would be<br>another option and would require less data/development time.<br>Transit LOS could also be developed and monitored separate from<br>the model in an Excel spreadsheet. BBB already does a basic<br>collection of this info, and full transit LOS data may be available in<br>upcoming GPS reporting from BBB. Seattle uses transit LOS in an<br>annual GIS report card map, focusing on transit speed and<br>frequency. SF uses transit LOS in their EIRs | V              | V | V                      | 4                  | V               |
| Neighborhood spill-over                                                      | Medium                   | Either traffic volumes or driver behavior (speed, etc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4              |   |                        | V                  |                 |
| Congestion                                                                   | Light                    | The sustainability report card currently measures intersection LOS.<br>Congestion is also indirectly measured in the relative travel times by<br>mode and the person capacity analysis above. (There is community<br>resistance to using intersection LOS.) Adjust significance thresholds<br>if used for EIRs.                                                                                                                                                                                                                                                                                   | 4              | 4 | 4                      | 4                  | V               |



| Santa Monica: Application                                                                                                                                        |                   |         |           |           |             |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|-----------|-----------|-------------|--|--|
| • Main Street                                                                                                                                                    |                   |         |           |           |             |  |  |
| FUNCTION                                                                                                                                                         | CONTEXT ZONE      | Minimum | Desirable | Preferred | Measured    |  |  |
| Transit<br>Secondary                                                                                                                                             | N'hood Commercial | ≥-1     | ≥-0.5     | ≥+1       | -0.8        |  |  |
| Auto<br>Secondary                                                                                                                                                | N'hood Commercial | <1.2    | <0.8      | >0.6      | 0.75        |  |  |
| Pedestrian<br>Primary                                                                                                                                            | N'hood Commercial | E       | A         | A         | В           |  |  |
| <ul> <li>Result: OK to slightly degrade auto QOS to improve transit and<br/>pedestrian QOS. Signal prioritization OK, but not dedicated transit lane.</li> </ul> |                   |         |           |           |             |  |  |
| Goal: Bring all measures into <i>balance</i>                                                                                                                     |                   |         |           |           |             |  |  |
|                                                                                                                                                                  |                   |         |           |           | NINELSCH 28 |  |  |

NILLSON 29

### **Tools and Data**

- GIS mapping
- Transportation Demand Management reporting data
- Big Blue Bus GPS data
- Public perception surveys
- Traffic counts









### **Best practice**

- Focus on outcomes.
- Ensure your local values are reflected and quantified. Include the triple bottom line.
- Use available or easily collectable data.
- Focus on citywide or regional impacts: don't make things a lot worse for everyone in order to make things a little better for a few.
- MMLOS can be bad for transit, biking and walking if misapplied.
- Focus on quality, not crowding.
- For congestion, focus on per capita Vehicle Miles Traveled.



## For More Information

Jeffrey Tumlin



Mobility Accessibility Sustainability

116 New Montgomery St, Ste 500 San Francisco, CA 94103

Tel: 415-284-1544

jtumlin@nelsonnygaard.com www.nelsonnygaard.com

# SUSTAINABLE TRANSPORTATION PLANNING

Tools for Creating Vibrant, Healthy, and Resilient Communitie

JEFFREY TUMLIN