SUPPLEMENTAL PROJECT INFORMATON HANDOUT

4. FINAL GEOTECHNICAL DESIGN AND MATERIALS REPORT

Santa Clara Valley Transportation Authority

GEOTECHNICAL DESIGN AND MATERIALS REPORT MATHILDA AVENUE IMPROVEMENTS AT SR 237 AND US 101 SUNNYVALE, CALIFORNIA 04-SCL-237-PM 2.7/3.3; 04-SCL-101-PM 45.2/45.8 EA 04-4H2901; PROJECT ID: 0413000204

For

PARIKH CONSULTANTS, INC.

2360 Qume Drive, Suite A San Jose, CA 95131

January 8, 2018

Job No. 2014-129-PSE

Geotechnical ■ Environmental ■ Materials Testing ■ Construction Inspection ■

WMH Corporation 50 West San Fernando Street, Suite 950 San Jose, CA 95113 Job No.: 2014-129-PSE January 8, 2018

Attn: Mr. Tim Lee

Sub: GEOTECHNICAL DESIGN & MATERIALS REPORT MATHILDA AVENUE IMPROVEMENTS AT SR 237 AND US 101 SUNNYVALE, CALIFORNIA

Dear Mr. Lee:

Transmitted herewith is the Geotechnical Design & Materials Report for the subject project. The report was prepared in accordance with the scope of work outlined in our proposal. The report is for submittal to Caltrans for their review and approval.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning our findings or conclusions, please feel free to contact this office.

Very truly yours, **PARIKH CONSULTANTS, INC.**

any Tank!

Gary Parikh, P.E., G.E., 666 Project Manager

Attachment: Geotechnical Design & Materials Report

"Approved as to impact on State facilities and conformance with applicable State standards and practices, and the technical oversight were performed as described in the California Department of Transportation A&E Consultant Services Manual."

Caltrans		
Title		
Date		
Caltrans		
Title		
Date		

TABLE OF CONTENTS

Page No.

1.0	INTRODUCTION				
2.0	EXISTING FACILITIES AND PROPOSED IMPROVEMENTS				
3.0	PERTINENT REPORTS AND INVESTIGATION				
4.0	PHY	SICAL SETTING	9		
4.1		Climate	9		
4.2		Topography and Drainage	10		
4.3		Man-Made and Natural Features of Engineering and Construction Significance 10			
4.4		Regional Geology and Seismicity.	10		
4.5		Soil Survey Mapping	12		
5.0	FIE	LD EXPLORATION	12		
5.1		Drilling and Sampling	12		
5.2		Geologic Mapping	13		
53		Geophysical Studies	13		
5.5 5.4		Instrumentation	13		
5 5		Exploration Notes	14		
6.0	GEO	DTECHNICAL TESTING	14		
6.0	OL	In-Situ Testing	14		
6.2		Laboratory Testing	14		
7.0	GEO	TECHNICAL CONDITIONS	15		
7.0	UL	Site Geology	15		
7.1	11	Lithology	15		
7. 7	1.1	Structure	15		
7. 7	1.2	Existing Slope Stability	16		
,. 7 2	1.5	Subsurface Soil Conditions	16		
7.2		Water	10		
7.5 7	21	Watel	10		
7.	J.I 72	Surface water	10		
	7.3.	1.1 Scoul	19		
7	2.0	Croundwater	20		
7. 7.4	5.2	Droiget Site Solomiaity	20		
7.4	11	Cround Motions	22		
7. 7	4.1	Cround Dupture	22		
/.	4.2 CE(22		
8.0	GEC	DIECHNICAL ANALYSIS AND DESIGN	23		
8.1	1 1	Dynamic Analysis	23		
8.	1.1	Parameter Selection	23		
8.	1.2	Analysis	23		
8.	1.3	Liquefaction Potential	24		
8.2	0.1	Cut and Excavation	23		
8.	2.1	Stability	25		
8.	2.2	Rippability	25		
8.	2.3	Grading Factor	26		
8.3		Embankments	26		

8.4	Earth Retaining System	27
8.5	Culverts	27
8.5.1	Corrosion Investigation	27
8.5.2	Culverts	28
8.6	Minor Structure Foundations	29
8.6.1	Overhead Sign Structures	29
8.6.2	Sound Wall.	31
8.6.3	CIDH Piling	31
8.6.4	Other Minor Structures	31
9.0 STR	RUCTURAL PAVEMENT	32
9.1	Laboratory Tests on Subgrade Material	32
9.2	Recommended Structural Pavement Sections	32
9.3	Existing Pavement Rehabilitation	35
10.0 MA	TERIAL SOURCES	36
11.0 MA	TERIAL DISPOSAL	37
12.0 CON	NSTRUCTION CONSIDERATIONS	37
12.1	Construction Advisories	37
12.2	Construction Consideration that Influence Specifications	38
12.3	Waiting Period	39
12.4	Working Platform	39
12.5	Construction Dewatering	40
12.6	Temporary Excavation and Shoring	40
12.7	Construction of CIDH Concrete Piles	41
12.8	Construction Monitoring and Instrumentation	42
12.9	Hazardous Waste Considerations	42
12.10	Differing Site Conditions	42
13.0 REC	COMMENDATIONS AND SPECIFICATIONS	43
13.1	Summary of Recommendations	43
13.2	Recommended Material Specifications	44
14.0 INV	ESTIGATION LIMITATIONS	44
REFERENC	CES	46

LIST OF PLATES

Project Location Map	Plate No. 1
USDA Soil Map	Plate No. 2
Site Plan	Plate No. 3
Geologic Map	Plate No. 4
Caltrans ARS Online Map	
Liquefaction Susceptibility Map	Plate No. 6

Page No.

LIST OF TABLES

TABLE 2.1 - SUMMARY OF EXISTING PAVEMENT SECTIONS	
TABLE 5.1- SUMMARY OF BORING INFORMATION	
TABLE 7.1 - SUMMARY OF AS-BUILT SUBSURFACE SOIL CONDITIONS	16
TABLE 7.2 - SUMMARY OF PREVIOUS GROUNDWATER LEVEL (as-built LC	DTBs) 20
TABLE 7.3 - SUMMARY OF RECENT GROUNDWATER LEVEL (2017)	
TABLE 7.4 - CALTRANS ARS ONLINE DATA	
TABLE 8.1 - CORROSION TEST RESULTS	
TABLE 8.2 - SIGN STRUCTURE FOUNDATION RECOMMENDATIONS	
TABLE 8.3 – LOADS AT TOP OF PILE.	
TABLE 8.4 – LPILE PARAMETERS FOR OS2-2 (Boring R-17-003)	
TABLE 8.5 – LPILE PARAMETERS FOR OS4-1 (Boring R-17-006)	
TABLE 9.1 - FLEXIBLE PAVEMENT SECTIONS (20 year design life)	
TABLE 9.2 - FLEXIBLE PAVEMENT SECTIONS (20 year design life)	
TABLE 9.3 - FLEXIBLE PAVEMENT SECTIONS (20 year design life)	
TABLE 9.4 - ADDITIONAL PAVEMENT SECTIONS OPTIONS	
TABLE 10.1 - SOURCES OF IMPORTED BORROW	

APPENDICES

Appendix A

Layout of Proposed Improvements

Appendix B

Log of Test Borings (R-17-003, -006, -009, -010, -011, -013, -014 and -015) As-Built Log of Test Borings

Appendix C

Laboratory Tests	Plate C-1
Summary of Laboratory Test Results	Plates C-2A and C-2B
Plasticity Chart	Plate C-3
Grain Size Distribution	Plate C-4
Unconfined Compression Tests	Plates C-5A through C-5J
Consolidation Test	Plate C-6
Corrosion Tests	Plates C-7A through C-7D
R-Value Tests	Plates C-8A, C-8B, and C-8C

Appendix D

Global Stability Analysis Results Liquefaction Analysis Results Settlement Analysis Results Pile Capacity and LPILE Analysis Results Structural Pavement Calculations

Appendix E

Parikh Consultants, Inc., 2015, Mathilda Avenue Improvements at SR 237 and US 101, Sunnyvale, California, Preliminary Pavement Condition Evaluation.

Appendix F

Pavement Engineering, Inc., 2017, Deflection Analysis for City of Sunnyvale, Mathilda Avenue & Moffett Park Drive

Appendix G

ALTPIPE Analysis Results

GEOTECHNICAL DESIGN AND MATERIALS REPORT MATHILDA AVENUE IMPROVEMENTS AT SR 237 AND US 101 SUNNYVALE, CALIFORNIA 04-SCL-237-PM 2.7/3.3; 04-SCL-101-PM 45.2/45.8 EA 04-4H2901; PROJECT ID: 0413000204

1.0 INTRODUCTION

This report presents the results of the geotechnical engineering investigation for the proposed "Mathilda Avenue Improvements at SR 237 and US 101 Project" (Project) to be constructed in the City of Sunnyvale, California. The work was performed in general accordance with the scope of work outlined in our proposal to WMH Corporation (Designer). The general location of the Project site is shown on the Project Location Map - Plate No. 1.

The purpose of this report is to document subsurface geotechnical conditions, provide analyses of anticipated site conditions as they pertain to the Project described herein, and to recommend design and construction criteria for the proposed Project. This report also establishes a geotechnical baseline to be used in assessing the existence and scope of changed site conditions, if any.

The scope of work performed for this investigation included a review of readily available soils and geologic literature pertaining to the site including Caltrans as-built log of test borings (LOTBs), site reconnaissance, drilling exploratory soil borings, obtaining representative soil samples and logging soil materials encountered in exploratory borings, laboratory testing of the representative soil samples, performing engineering analyses, and preparation of this report.

In addition, the scope of work included a pavement deflection test along Mathilda Avenue and portion of West Moffett Park Drive, which was conducted by Pavement Engineering, Inc. (PEI) from Redding, California. The pavement rehabilitation recommendations are provided in a deflection analysis report under a separate cover (see Appendix F).

The report is intended for use by the design engineer, construction personnel, bidders and contractors for information and reference purposes only, and should not be used directly as specifications.

2.0 EXISTING FACILITIES AND PROPOSED IMPROVEMENTS

The following are general descriptions of the existing facilities within the Project limits:

Mathilda Avenue

Within the Project area, Mathilda Avenue is a six-lane divided local roadway. Mathilda Avenue serves as the main access to the residential communities on the east side of Mathilda Avenue and is the only access to the landlocked area contained within the US 101/SR 237/Mathilda triangle via Ross Drive.

SR 237

SR 237 is an east-west freeway starting at SR 82 (El Camino Real) in the City of Mountain View and ending approximately 11 miles east at I-680 in the City of Milpitas. Within the Project area, SR 237 provides two (2) mixed-flow lanes in each direction. On eastbound SR 237, a High Occupancy Vehicle (HOV) lane is provided east of Mathilda Avenue and becomes an HOV/Express Lane from east of Zanker Road to the eastbound SR 237/ northbound I-880 direct connector ramp. On westbound SR 237, there is an HOV/Express Lane beginning at the southbound I-880/ westbound SR 237 direct connector ramp that becomes an HOV lane from North First Street to just east of Fair Oaks Avenue. Within the Project area, auxiliary lanes are provided in each direction between US 101 and Mathilda Avenue on SR 237. There is also an auxiliary lane on westbound SR 237 between Fair Oaks Avenue and Mathilda Avenue.

The SR 237/Mathilda Avenue Interchange is a full 'tight' diamond interchange that accommodates all ramp movements with access to and from eastbound and westbound SR 237. All ramp termini are signalized. The westbound SR 237 on-ramp has existing ramp metering equipment installed, however there is no existing ramp metering equipment installed for the eastbound SR 237 on-ramp.

US 101

Within the Project area, US 101 provides three mixed-flow lanes plus one HOV lane in each direction, while an auxiliary lane is also provided in the southbound direction between SR 237 and Mathilda Avenue.

The Moffett Park Drive/US 101 northbound on-ramp is a one-lane on-ramp located along Moffett Park Drive to the west of the Mathilda Avenue/Moffett Park Drive intersection. This on-ramp merges with the westbound SR 237 off-ramp that connects to northbound US 101. The ramp terminus is signalized, and the on-ramp is not metered.

The US 101/Mathilda Avenue Interchange is a partial cloverleaf interchange with access to all but two movements: southbound Mathilda Avenue to northbound US 101 and southbound US 101 to northbound Mathilda Avenue. None of the ramp termini are signalized; however all of the on-ramps are metered.

Major Structures

Major structures in the Project area and close proximity include the following:

- Mathilda Avenue Overcrossing (at US 101), Bridge Number 37-0177.
- Route 237/101 Separation (west of the Project site), Bridge Number 37-0178.
- North Mathilda Avenue Undercrossing (at SR 237), Bridge Number 37-0179.
- South Borregas Avenue Pedestrian Overcrossing (at US 101 east of the Project site), Bridge Number 37-0663.
- North Borregas Avenue Pedestrian Overcrossing (at SR 237 east of the Project site), Bridge Number 37-0664.

Existing Pavement Sections

Table 2.1 summarizes the as-built pavement sections within the improvement area based on the Typical Sections contained on the *As-built Roadway Plans* listed in Section 3.0.

Roadway	Location	Pavement Sections (ft)	Approx. Total Thickness (ft)	Year of Construction
Mathilda Ave. at US 101 and SR 237 Interchanges	Loops, ramps and speed change lanes	0.25 AC 0.33 CTB (Cl A) 0.33 CTB (Cl B) 0.50 AS (Cl 2)	1.40	1960
SR 237 EB, WB		0.33 AC 0.33 CTB (Cl A) 0.33 CTB (Cl B) 0.67 AS (Cl 2)	1.65	1960
US 101 NB, SB		Main lanes 0.75 PCC 0.33 CTB (Cl A) 1.00 AS (Cl 2) Shoulders 0.25 AC 0 67 AB (Cl 2)	2.10 1.92 to 2.25	1960
Mathilda Ave.	NB, SB	1.00 to 1.33 AS (Cl 2) 0.33 AC 0.33 CTB (Cl A) 0.33 CTB (Cl B) 0.50 AS (Cl 2)	1.50	1960
Mathilda Ave.	"M1" 45+07.11 to 66+20	Widening on both sides 1.35 AC (A)	1.35	1991
Moffett Park Drive	"L6" 29+99.07 to 34+35.41, "L6" 37+10 to 43+84.51	Widening on left 0.90 AC (A)	0.90	1991
Mathilda Ave. OC at US 101, PM 45.1	Loop on-ramps	Existing 0.33 AC 0.67 AB 0.67 AS Widening on right 1.20 AC (A)	1.67	1996
Mathilda Ave.	M1 58+52.75 to 59+02.65	Widening median on both sides 1.33 AC (A)	1.33	1999

TABLE 2.1 - SUMMARY OF EXISTING PAVEMENT SECTIONS

Mathilda Avenue Improvements at SR 237 and US101 Job No. 2014-129-PSE January 8, 2018 Page 5

Roadway	Location	Pavement Sections (ft)	Approx. Total Thickness (ft)	Year of Construction
Mathilda Ave.	M1 11+24 to 22+14	Widening both median and outside of road in both directions 1.33 AC (A)	1.33	1999
Moffett Park Drive	MP 95+75 to 124+51.08	Widening and new pavement 1.33 AC (A)	1.33	1999
Moffett Park Drive on-ramp	97+00 to 104+45	0.25 AC (A) 0.50 AB (Cl B) 0.75 AS (Cl 1)	1.50	1999
SR 237 on-ramp	16+00 to 22+45	0.25 AC (A) 0.50 AB (Cl B) 0.75 AS (Cl 1)	1.50	1999
Mathilda Ave. OC at US 101, Route 101 PM 45.4/45.9SB off-ramp onto SB Mathilda Ave.NB off-ramp onto NB Mathilda Ave.NB loop off-ramp onto SB Mathilda Ave.NB loop off-ramp onto SB Mathilda Ave.NB loop on-ramp from NB Mathilda Ave.		Existing 0.33 AC (A) 0.67 AB 0.50 AS Widening on right 1.00 AC (A)	1.50	2000

These sections are based on the available as-built records and may not include all pavement rehabilitation or other maintenance related modifications that have occurred over time. Therefore, it should be used as a reference only and not for construction cost estimates or bidding purposes.

Proposed Improvements

The California Department of Transportation (Caltrans), in cooperation with the Santa Clara Valley Transportation Authority (VTA) and the City of Sunnyvale, is proposing the Project to improve Mathilda Avenue from Almanor Avenue/Ahwanee Avenue to Innovation Way, including on- and off-ramp improvements at the State Route (SR) 237/Mathilda Avenue and U.S. Highway 101 (US 101)/Mathilda Avenue interchanges. On SR 237, the Project limits are from 0.3 miles east of the US 101/SR 237 interchange (post mile [PM] 2.7) to 0.3 miles east of the Mathilda Avenue undercrossing (PM 3.3). On US 101, the Project limits are from 0.5 miles south of the Mathilda Avenue overcrossing

(PM 45.2) to 0.3 miles south of the SR 237/US 101 interchange (PM 45.8). The total length of the Project on Mathilda Avenue is approximately one (1) mile.

The primary purpose of the Project is to improve traffic operations on Mathilda Avenue through the US 101 and SR 237 interchanges. The Project will include reconfiguration of the US 101 and SR 237 interchanges with Mathilda Avenue. This includes modification to on- and off-ramps; removal, addition, and signalization of intersections, and provision of new left-turn lanes. In addition, the Project would require modification and construction of bicycle and pedestrian facilities, utilities, drainage, street lighting, ramp metering, signage, and light rail crossing facilities as described. The Project will include the following design features:

- Moffett Park Drive between Bordeaux Drive and Mathilda Avenue would be removed and replaced with a Class I bikeway (as described below). Vehicular traffic would be shifted north to Bordeaux Drive and Innovation Way to access Mathilda Avenue. Innovation Way has been extended from Mathilda Avenue to Bordeaux Drive as part of the Moffett Place development project. Moffett Park Drive eastbound/westbound north of Mathilda Avenue would remain.
- The westbound SR 237 off-ramp would be realigned and widened to terminate opposite Moffett Park Drive (on the west side of Mathilda Avenue). The existing signalized intersections on Mathilda Avenue at the SR 237 westbound off-ramp and Moffett Park Drive would be removed.
- The reconfigured westbound SR 237 off-ramp/Moffett Park Drive intersection would be signalized. The westbound SR 237 on-ramp would be modified to intersect with Mathilda Avenue just south of the new signalized intersection. Mathilda Avenue northbound traffic bound for westbound SR 237 would make a U-turn movement at the new signalized intersection to access the on-ramp.
- Provide three continuous through lanes in each direction on Mathilda Avenue.
- Remove northbound US 101 loop off-ramp and shift traffic to northbound US 101 diagonal off-ramp.

Mathilda Avenue Improvements at SR 237 and US101 Job No. 2014-129-PSE January 8, 2018 Page 7

- Realign and widen northbound US 101 ramps and signalize ramp intersection with Mathilda Avenue, and construct left-turn lane on southbound Mathilda Avenue to access northbound US 101 loop on-ramp.
- Realign southbound US 101 off-ramp and loop on-ramp and signalize ramp intersection with Mathilda Avenue.
- Modify Mathilda Avenue/Ross Drive signal intersection.
- Modify westbound SR 237 ramps to provide a diamond configuration.
- Pavement Rehabilitation on Mathilda Avenue

An Environmental Impact Report (EIR) to satisfy the requirements of the California Environmental Quality Act (CEQA) was approved on January 10, 2017. Cooperative Agreement 04-2567 between Caltrans and VTA was executed on May 7, 2015 to provide IQA for the PA&ED, PS&E and Right of Way phases. Caltrans is the partnering agency and VTA and the City of Sunnyvale are the sponsoring, funding, and implementation agencies for the PA&ED, PS&E, R/W and constructions phases of the project. The Project is included in the VTP 2040 highway program and will be locally funded.

The proposed improvements include new overhead sign structures, sound wall replacement, new pavement sections for Mathilda Avenue widening, US 101 off-ramp modification, and pavement rehabilitation on Mathilda Avenue which require geotechnical engineering investigation and recommendations. Other minor improvements will follow appropriate Caltrans and City standards and no specific geotechnical engineering services are required. The recommendations presented in this report are based on the above information. Any major deviation should be reported to this office for consideration. The layout of proposed improvements is included in Appendix A.

3.0 PERTINENT REPORTS AND INVESTIGATION

The following documents and literatures relevant to the Project were reviewed. The list shows the years quoted from the Caltrans as-built LOTBs when the field exploration was conducted. Parikh Consultants, Inc. (PARIKH) previously performed visual evaluation of the existing pavement conditions at the site in December 2014, and provided a geotechnical memorandum titled "Mathilda

Mathilda Avenue Improvements at SR 237 and US101 Job No. 2014-129-PSE January 8, 2018 Page 8

Avenue Improvements at SR 237 and US 101, Sunnyvale, California, Preliminary Pavement Condition Evaluation" in January 2015 (see Appendix E).

As-Built Log of Test Borings

- Caltrans, 1957, As-built LOTB, Mathilda Avenue OC (Br. No. 37-0177).
- Caltrans, 1957, As-built LOTB, Route 237/101 Separation (Br. No. 37-0178).
- Caltrans, 1957, As-built LOTB, North Mathilda Avenue UC (Br. No. 37-0179).
- Caltrans, 2005, As-built LOTB, South Borregas Avenue POC (Br. No. 37-0663).
- Caltrans, 2005, As-built LOTB, North Borregas Avenue POC (Br. No. 37-0664).

As-Built Roadway Plans

- Caltrans, 1960, As-built Plans, State Highway in Santa Clara County, on Bayshore Highway between 0.3 mile North of Charleston Road in Mountain View and Guadalupe River near San Jose including Mountain View-Alviso Road between Baysore Highway and 0.2 mile east of Borregas Avenue.
- Caltrans, 1996, As-built Plans, State Highway in Santa Clara County, in San Jose, Santa Clara, Mountain View, Sunnyvale and Palo Alto at Various Locations from 0.2 mile South of Guadalupe River Bridge to Embarcadero Road Overcrossing.
- Caltrans, 2000, As-built Plans, State Highway in Santa Clara County, in San Jose and Sunnyvale at Various Locations from 0.5 km South of De La Cruz Boulevard Overcrossing to 0.4 km North of Mathilda Avenue Overcrossing.
- City of Sunnyvale Department of Public Works, 1991, As-built Plans, Mathilda Avenue Widening at Route 237, in Santa Clara County in Sunnyvale at North Mathilda Avenue Undercrossing.
- Santa Clara County Transportation Authority, 1999, As-built Plans, Tasman Corridor Project, Castro Street to Lockheed Way.

Mathilda Avenue Improvements at SR 237 and US101 Job No. 2014-129-PSE January 8, 2018 Page 9

Others

- Baseline Environmental Consulting, 2015, Preliminary Geological Assessment for the Mathilda Avenue Improvements at SR 237 and US 101 Project.
- Baseline Environmental Consulting, 2015, Initial Site Assessment for the Mathilda Avenue Improvements at SR 237 and US 101 Project.
- Baseline Environmental Consulting, 2017, Preliminary Site Assessment for the Mathilda Avenue Improvements at SR 237 and US 101 Project.
- Parikh Consultants, Inc., 2005, Geotechnical Engineering Investigation, South Borregas Avenue POC at Hwy 101, City of Sunnyvale, California (Br. No. 37-0663).
- Parikh Consultants, Inc., 2005, Geotechnical Engineering Investigation, North Borregas Avenue POC at SR 237, City of Sunnyvale, California (Br. No. 37-0664).
- Parikh Consultants, Inc., 2015, Mathilda Avenue Improvements at SR 237 and US 101, Sunnyvale, California, Preliminary Pavement Condition Evaluation.
- Parikh Consultants, Inc., 2017, Preliminary Geotechnical Design and Materials Report, Mathilda Avenue Improvements at SR 237 and US 101 Project.
- WRECO, 2016, Water Quality Assessment Report for the Mathilda Avenue Improvements at SR 237 and US 101 Project, City of Sunnyvale, California.

4.0 PHYSICAL SETTING

4.1 Climate

The Project site is characterized with moderate climatic conditions, which consist of mild winters, warmer summers, small daily and seasonal temperature ranges and mild humidity. Based on the statistical information obtained from the website of the Western Regional Climate Center, for an available record period from 1953 to 2015 at Palo Alto station (No. 046646), the average temperature in the project vicinity ranges from a minimum of 38.2°F in December to a maximum of 78.4°F in July and August, with an annual average total precipitation of about 15.2 inches. Most of the rainfall is recorded in February with an average total monthly precipitation of 3.15 inches. July is the month with

the least rainfall precipitation of 0.02 inches. Freezing weather may occur, but it is generally not necessary to design for freeze-thaw conditions for the area.

4.2 Topography and Drainage

The Project site is located within the Santa Clara Valley groundwater basin with Diablo Range on the east and Santa Cruz Mountains on the west. The area generally drains northeast toward the San Francisco Bay. Based on a Project drainage profile, the ground surface elevations within the Project area ranges between approximately Elevation 50 feet and 20 feet (NAD83). Grade differences may vary due to roadway crossing and structure approach embankments. Surface drainage is collected in the local storm drain systems. In general, hills or valleys in the region do not directly influence the Project site.

4.3 Man-Made and Natural Features of Engineering and Construction Significance

The Project will not modify the existing overcrossing or undercrossing structures, except the Mathilda Avenue OC where bridge railings will be replaced. Sunnyvale West Channel is a flood protection channel that crosses to the west side of Mathilda Avenue at Innovation Way, then aligns north-south to cross SR 237 and US 101. San Francisco Public Utilities Commission (SFPUC) B.D.P.L. aqueducts (72- and 90-inch diameter) cross Mathilda Avenue between US 101 and Ross Drive, and US 101 just east of the Sunnyvale West Channel crossing. No structure is proposed on top of the channel and aqueducts.

4.4 Regional Geology and Seismicity

The Project site is in the southern portion of the San Francisco Bay area in the Coast Range geomorphic province of northern California. The Coast Range forms a nearly continuous topographic barrier between the California coastline and the San Joaquin Valley. In general, the Coast Range in this region is a double chain of mountains running north-northwest. Between the two chains of mountain lies the basin of San Francisco Bay, including the valleys at the end of the Bay, Petaluma on the north

and Santa Clara on the south. Three prominent geologic blocks dominate the San Francisco Bay Area: the Santa Cruz Mountains (western block), the San Francisco Bay (central block), and the East Bay Hills/Diablo Range (eastern block).

The Santa Clara Valley is part of a fault-bounded valley which includes San Francisco Bay. It is believed that this trough formed in Pliocene Epoch and has been subjected to extensive deposition during the Pleistocene time. This deposition has resulted in filling the trough with marine and alluvial sediments derived from the adjoining hills. Normal processes associated the development of streams, alluvial fans, flood plains and deltas, along with the multiple cycles of erosion and deposition due to sea level changes have resulted in a very complex sedimentary sequence. The deposits within the general area may be characterized by irregular bedding, interfingering of fine and coarse grained materials, stream braiding and lenses. Individual deposits could be highly variable in both thickness and lateral extent.

The regional seismic context is an important consideration because the forces that affect the Project area are regional in nature: that is, they are generated off-site, outside the immediate area, or outside the Santa Clara County. However, the effects of these forces must be accommodated within the limits of the Project, in compliance with regulations and guidelines established by the State and County.

Santa Clara County and the Bay Area are in one of the most active seismic regions in the United States. Each year, low- and moderate-magnitude earthquakes occurring within or near the Bay Area are felt by residents. Since the mid-nineteenth century, hundreds of earthquakes have been felt in Contra Costa County. In 1868, the Hayward Fault ruptured the ground surface, producing several feet of right lateral displacement at the ground surface and causing an earthquake that damaged many structures in the Bay region. The Loma Prieta Earthquake of October 17, 1989, originated within the San Andreas Fault Zone and caused severe damage throughout much of the Bay Area. The major fault zones of the San Andreas Fault System (including the Hayward and Calaveras faults) have been the source of other earthquakes, and are expected to be the source of future earthquakes.

4.5 Soil Survey Mapping

Based on a Soil Map of Santa Clara County from the Web Soil Survey of the United States Department of Agriculture (USDA), the entire Project area is underlain by soils with a map unit name "Urbanland-Hangerone complex (map unit symbol: 145)" having 0 to 2 percent slopes, and roadway fill. A USDA Soil Map covering the Project area is attached as Plate No. 2. Since the Project site is in a developed urban area, the soil components may have been altered from those shown in the USDA soil map.

5.0 FIELD EXPLORATION

5.1 Drilling and Sampling

A total of 15 borings were drilled for the Project from March 27 to April 6, 2017. The borings were drilled with a truck- or track-mounted drill rig using hollow-stem augers or rotary wash drilling method. The boring information is tabulated in Table 5.1. The approximate boring locations are shown on the Site Plan - Plate No. 3. The relatively shallow borings (about 5 feet deep) are to collect bulk subgrade soil samples for pavement design. The relatively deep borings (depths ranging from approximately 25.5 to 41.5 feet) are for structure design.

Boring No.	Approx. Station (ft)	Approx. Offset (ft)	Approx. Ground Elev. (ft)	Approx. Boring Depth (ft)	Date Drilled
B-1	28+00	"M1" 30 Rt.	38	5	3/27/2017
B-2	35+30	"M1" 50 Rt.	35	5	3/27/2017
R-17-003	45+80	"M1" 53 Rt.	31	30.5	4/6/2017
B-4	54+90	"M1" 85 Rt.	24	5	4/6/2017
B-5	63+50	"M1" 53 Rt.	22	5	3/28/2017
R-17-006	70+00	"M1" 32 Lt.	20	31.5	3/28/2017
B-7	66+05	"M1" 33 Lt.	20	5	3/28/2017
B-8	60+00	"M1" 105 Lt.	24	5	3/28/2017
R-17-009	50+85	"M1" 53 Lt.	30	41.5	3/27/2017

TABLE 5.1- SUMMARY OF BORING INFORMATION

Boring No.	Approx. Station (ft)	Approx. Offset (ft)	Approx. Ground Elev. (ft)	Approx. Boring Depth (ft)	Date Drilled
R-17-010	47+00	"M1" 48 Lt.	35	41.5	3/27/2017
R-17-011	38+45	"M1" 68 Lt.	38	36.5	4/4/2017
B-12	31+45	"M1" 62 Lt.	36	5	3/27/2017
R-17-013	395+00	"C" 81 Lt.	31	41.5	3/28/2017
R-17-014	382+60	"C" 76 Lt.	32	35.5	4/6/2017
R-17-015	76+35	"SW1" 6 Rt.	31	25.5	4/6/2017

Selected soil samples were obtained with either a 2.5-inch I.D. Modified California (MC) or 1.4-inch I.D. Standard Penetration Test (SPT) sampler at various depths. The field investigation was conducted under the supervision of the field engineer who logged the test borings and prepared the samples for subsequent laboratory testing and evaluation. After visual examination, the samples were sealed and transported to PARIKH laboratory for further evaluation and testing.

5.2 Geologic Mapping

The Project site is mostly underlain by Quaternary sediments and roadway fill (see Section 7.1 "Site Geology"). Site specific geologic mapping was not performed for this Project.

5.3 Geophysical Studies

The subject was considered and was determined to be not applicable to the Project.

5.4 Instrumentation

The subject was considered and was determined to be not applicable to the Project.

5.5 Exploration Notes

The exploratory borings mostly encountered clayey surficial deposits. Drilling conditions using hollow-stem augers and rotary wash drilling method were considered appropriate for this site.

6.0 GEOTECHNICAL TESTING

6.1 In-Situ Testing

Blow counts were recorded during soil sampling in the field. The blow counts combining with laboratory tests such as unconfined compression test are used to develop soil shear strengths for soil bearing capacity estimation. Soil samples were obtained during drilling by driving a MC or SPT sampler into subsurface soils under the impact of a 140-lb hammer falling through 30 inches. The blow counts required to drive the sampler for the last 12 inches are presented on the LOTBs in Appendix B. The drilling subcontractor was Geo-Ex Subsurface Exploration from Dixon, California. Based on a hammer energy calibration information provided, the hammer energy ratios of the drill rigs (CME 75 and CME 45) used are approximately 70% and 75%, respectively. Using a method suggested by Daniel, Howie and Sy (2003), when correlating standard penetration data, the blow counts for the Modified California Sampler may be converted to equivalent Standard Penetration Test blow counts by multiplying a conversion factor of 0.6.

6.2 Laboratory Testing

Laboratory tests were performed in accordance with California test methods on selected soil samples. The types of laboratory tests performed included the following:

- Moisture Content (CT 226)
- Atterberg Limits (CT 204)
- Grain Size Distribution (CT 202)
- Consolidation (CT 219)

Mathilda Avenue Improvements at SR 237 and US101 Job No. 2014-129-PSE January 8, 2018 Page 15

- Unconfined Compression (CT 221)
- Corrosion (CT 643, 417 and 422)
- R-value (CT 301)

The corrosion tests were performed by Sunland Analytical in Rancho Cordova, California. The laboratory test results are contained in Appendix C.

7.0 GEOTECHNICAL CONDITIONS

7.1 Site Geology

Geologic features pertaining to the Project site were evaluated by referencing to the Geologic Map of the Palo Alto and Mountain View Quadrangles, Alameda, San Mateo & Santa Clara Counties, California, by Dibblee, T. W., and Minch, J. A. (ed.) (2007). Based on the map, different Holocene age units are present beneath the project site and its vicinity. A Geologic Map covering the general project area is shown on Plate No. 4. Descriptions of the main geologic units are as follows:

- Qac Silty clay and organic clay, fossiliferous; represents intra-fan areas.
- Qya Alluvial sand, fine-grained, silt, and clay; where differentiated represents distal alluvial fan deposits at outer edge of fan areas.

7.1.1 Lithology

The Project site is generally underlain by native materials and roadway fills. No bedrocks are mapped at the site.

7.1.2 Structure

The Project site consists of native soils and roadway fills. The subject was considered and was determined to be not applicable to the Project.

7.1.3 Existing Slope Stability

The majority of the Project site is relatively flat with asphalt pavement surface and concrete sidewalks. The existing embankments within the Project limits generally have \pm 2H:1V (horizontal to vertical) or flatter slopes. Embankment heights are approximately 20 feet at the Mathilda Avenue overcrossing (US 101) and undercrossing (SR 237) structures. Existing embankments are landscaped and appear to be in relatively stable condition.

7.2 Subsurface Soil Conditions

As-Built Subsurface Soil Information

The Caltrans as-built LOTBs and previous geotechnical engineering investigation reports for the structures within the Project site and in close proximity were reviewed. In general, the subsurface profiles encountered in the previous borings are mostly composed of younger alluvium clayey and silty materials interbedded with granular soils, which are, in general, consistent with the geologic materials shown in the Geologic Map of the site. Tables 7.1 presents general description of the subsurface soil conditions as shown in the as-built LOTBs. The as-built LOTBs are contained in Appendix B.

Structure and Year of Field Exploration	Boring No. and Approx. Ground Surface Elev. ¹ (ft)	Subsurface Soil Conditions ² (Summarized from the As-built Boring Logs)
Mathilda Avenue OC,	B-1, 34.4	Borings B-1 and B-2 were drilled to depths of approximately 100 and 115 feet
Br. No. 37-0177	B-2, 34.0	below ground surface (bgs). The borings encountered predominately medium
(1957)	B-3, 33.4	stiff to stiff silty and clayey soils with isolated medium dense sand and gravel.
	B-4, 33.5	
	B-5, 34.3	B-3, B-4, and B-5 were cone penetration borings advanced using a No. 2
		McKiernan-Terry air hammer. The soil description is not available.

TABLE 7.1 - SUMMARY OF AS-BUILT SUBSURFACE SOIL CONDITIONS

Mathilda Avenue Improvements at SR 237 and US101 Job No. 2014-129-PSE January 8, 2018 Page 17

Structure and Year of Field Exploration	Boring No. and Approx. Ground Surface Elev. ¹ (ft)	Subsurface Soil Conditions ² (Summarized from the As-built Boring Logs)
Route 237/101 Separation, Br. No. 37-0178 (1957)	B-1, 38.3 B-2, 40.5 B-3, 40.3 B-4, 35.2 B-5, 36.4 B-6, 38.7 B-7, 37.3	Borings B-1 and B-2 were drilled to approximately 100 feet deep bgs and encountered predominately interbedded silty sand, poorly-graded sand, poorly- graded grave, silty clay, clayey silt, and sandy silt. The apparent densities of granular soils vary mostly from medium dense to very dense. The consistencies of the silty and clayey soils vary mostly from medium stiff to very stiff. Borings B-3 through B-7 were cone penetration borings advanced using a No. 2 McKiernan-Terry air hammer. The soil description is not available
North Mathilda Avenue UC, Br. No. 37-0179 (1957)	B-1, 25.4 B-2, 24.3 B-3, 25.8 B-4, 24.3 B-5, 24.1 B-6, 24.4 B-7, 24.8 B-8, 24.8	Borings B-3 and B-6 encountered mostly silt, clayey silt, sandy silt and silty clay, interbedded with silty sand, poorly-graded sand and poorly-graded gravel to the maximum depths drilled, approximately 110 and 120 feet. The consistencies of the silty and clayey soils vary mostly from soft (between about 15 to 25 feet deep) to very stiff. The apparent densities of sandy soils are mostly medium dense and dense. The rest of the borings were cone penetration borings advanced using a No. 2 McKiernan-Terry air hammer. The soil description is not available.
South Borregas Avenue POC, Br. No. 37-0663 (2005)	B-5, 31.1 B-6, 30.5 B-7, 31.1 B-8, 30.5	Four borings were drilled to depths from approximately 64 to 103 feet bgs. The borings encountered about 3 to 4 feet of fill underlain by primarily clayey soils with isolated layers of clayey sand, poorly-graded sand with silt, poorly- graded sand with clay, well-graded sand with silt and gravel, and silty sand with gravel. The consistencies of the clayey soils vary from medium stiff to hard with consistency increasing with depth. The sandy soils are generally medium dense and dense. Fat clay about 4 to 10 feet thick was encountered below the fill in Borings B-6, B-7 and B-8, and also at deeper elevation in Boring B-6.
North Borregas Avenue POC, Br. No. 37-0664 (2005)	B-1, 17.4 B-2, 15.7 B-3, 18.7 B-4, 19.7	Four borings were drilled to depths from approximately 62 to 103.5 feet bgs. The borings encountered predominately clayey soils with isolated layers of well-graded sand with silt and gravel, silty sand with gravel, silty sand, and clayey sand. The consistencies of the clayey soils vary from medium stiff to hard with consistency increasing with depth. The sandy soils are generally medium dense and dense. Fill of 3.5 to 5 feet thick was encountered in the top in Borings B-2 and B-3. Fat clay about 5 feet thick was encountered below the fill in Boring B-3, and also encountered at deeper locations in Borings B-2 and B-3.

1. Elevations are assumed to be based on NGVD29 datum for 1957 LOTBs and NAVD88 datum for 2005 LOTBs.

2. The summaries generally follow the soil classification and description shown on the as-built LOTBs.

Subsurface Soil Conditions of Recent Borings

The subsurface profile encountered in the 2017 exploratory borings consisted of mostly clayey soils with isolated layers of sandy materials (<= 5 feet thick), except Boring R-17-015 in which about 9 feet thick of saturated, very loose to loose sand layer was encountered at depths from 13 to 22 feet. The consistencies of the clay mostly vary from soft to very stiff, and the apparent densities of the sand vary mostly from loose to medium dense. The findings revealed in the recent soil borings are in general consistent with the as-built LOTB information.

The LOTBs presented in Appendix B were prepared from the field logs which were edited after visual re-examination of the soil samples in the laboratory and results of classification tests on selected soil samples as indicated on the logs. The abrupt stratum changes shown on these logs may be gradual and relatively minor changes in soil types within a stratum may not be noted on the logs due to field limitations.

Due to limitations inherent in geotechnical investigations, it is neither uncommon to encounter unforeseen variations in the soil conditions during construction nor is it practical to determine all such variations during an acceptable program of drilling and sampling. Variations in subsurface soil conditions, if encountered, generally require additional geotechnical investigation to further evaluate subsurface soil conditions. Supplemental funds should be included in the Engineers Cost Estimate to accommodate any additional geotechnical investigation that may be required during construction.

7.3 Water

7.3.1 Surface Water

The grade at the Project site gently slopes down toward the north. The surface water/drainage generally follows the ground topography and is collected in the local storm drainage system.

7.3.1.1 Scour

No open water course is located within the Project limits.

7.3.1.2 Erosion

Erosion is an action of surface processes such as water, wind, or gravity that remove particles of soil or rock from one location to another location. The rate of soil erosion from rain and storm water is a function of the slope, vegetative cover, and soil properties. Based on the Soil Map of Santa Clara County from the Web Soil Survey of USDA (2016), the entire Project area is underlain by soils with a map unit named "Urbanland-Hangerone complex (map unit symbol: 145)."

The potential hazard of soil loss from unpaved roads and trails is based on soil erodibility factor K, slope, and content of rock fragments. The hazard is described as "slight," "moderate," or "severe." A rating of "slight" indicates that little or no erosion is likely; "moderate" indicates that some erosion is likely, that the roads or trails may require occasional maintenance, and that simple erosion-control measures are needed; and "severe" indicates that significant erosion is expected, that the roads or trails require frequent maintenance, and that costly erosion-control measures are needed. It should be noted that, for areas previously experienced grading, construction, excavation or fill, the erodibility is expected to have been changed significantly. Generally, for paved roads and trails, erosion hazard may be considered slight. For unpaved areas, the erosion hazard may be considered moderate or severe.

Baseline Environmental Consulting (BASELINE, 2015), in a Preliminary Geological Assessment report for the Project, states that soils with erodibility factors between about 0.25 and 0.4 are moderately susceptible to water erosion and K factors greater than 0.4 are highly susceptible to water erosion. The mapped soil "Urbanland-Hangerone complex" at the Project site has a soil erodibility factor (k) of about 0.37 (BASELINE, 2015), indicating moderate susceptibility to water erosion.

The existing embankment slopes have established landscaping to help control erosion. It is recommended that construction of the proposed Project be undertaken during the dry season or

winterization measures be implemented. Newly graded slopes should be treated with erosion control measures. Uncontrolled runoff could wash away soils, block the storm drains, and damage the stability of embankments, pavement, and structure foundations.

Best management practices (BMP) such as temporary silt fence, temporary ESA fence, fiber rolls, temporary soil stabilizer, temporary erosion control, temporary construction entrances/exits, temporary construction road, temporary concrete washouts, temporary stockpile covers, and temporary drain inlet protection may be used on this Project. The existing vegetated surfaces will be preserved or relandscaped with plants, soils, mulch or blankets. Implementation of surface drainage and slope treatment is important and should be incorporated in the Project plans. Landscaping should be planned to protect any new slopes and should be in accordance with "Erosion Control" of the Caltrans Standard Specifications and Caltrans Best Management Practices.

7.3.2 Groundwater

Groundwater was encountered at depths approximately from 8.5 to 13 feet deep (Elev. 10 to 25 feet) in 8 relatively deep borings during drilling (2017). The as-built LOTBs show that the groundwater level varied from approximately 8 to 18 feet deep (elevations from approximately 11 to 25 feet) during previous drilling. It appears that the groundwater encountered in the recent and previous borings are in general consistent with each other. Groundwater may vary with passage of time due to seasonal groundwater level fluctuation, surface and subsurface flows, ground surface run-off, and other factors that may not be present at the time of investigation. The groundwater levels encountered in the previous and recent borings are presented in Tables 7.2 and 7.3, respectively.

Structure and Year of Field Exploration	Boring No. and Approx. Ground Surface Elev. ¹ (ft)	Approx. Groundwater Depth (ft)	Approx. Groundwater Elev. ¹ (ft)
Mathilda Avenue OC, Br. No. 37-0177 (1957)	B-3, 33.4	18.2	15.2
Route 237/101 Separation, Br. No. 37-0178 (1957)	B-4, 35.2 B-6, 38.7	10.0 18.0	25.2 20.7

 TABLE 7.2 - SUMMARY OF PREVIOUS GROUNDWATER LEVEL (as-built LOTBs)

Mathilda Avenue Improvements at SR 237 and US101 Job No. 2014-129-PSE January 8, 2018 Page 21

Structure and Year of Field Exploration	Boring No. and Approx. Ground Surface Elev. ¹ (ft)	Approx. Groundwater Depth (ft)	Approx. Groundwater Elev. ¹ (ft)
North Mathilda Avenue UC, Br. No. 37-0179 (1957)	B-1, 25.4 B-4, 24.3 B-5, 24.1	13.0 12.9 13.0	12.4 11.4 11.1
	B-7, 24.8	13.3	11.5
South Borregas Avenue POC, Br. No. 37-0663 (2005)	B-8, 30.5	8.0	22.5

1. Elevations are assumed to be based on NGVD29 datum for 1957 LOTBs and NAVD88 datum for 2005 LOTBs.

Boring No.	Approx. Ground Surface Elev. ¹ (ft)	Approx. Groundwater Depth (ft)	Approx. Groundwater Elev. ¹ (ft)	Date of Measurement
R-17-003	31	8.5	22.5	4/6/2017
R-17-006	20	10	10	3/28/2017
R-17-009	30	11	19	3/27/2017
R-17-010	35	12	23	3/27/2017
R-17-011	38	13	25	4/4/2017
R-17-013	31	12	19	3/28/2017
R-17-014	32	9	23	4/6/2017
R-17-015	31	8.5	22.5	4/6/2017

TABLE 7.3 - SUMMARY OF RECENT GROUNDWATER LEVEL (2017)

1. Elevations are assumed to be based on NAVD88 datum.

Groundwater elevation could significantly vary in the event of a 'normal' rainfall period or following an El Nino event. Also groundwater may take time to recharge or react to such changes and therefore seasonal fluctuations or the extreme conditions as noted above may or may not affect the groundwater immediately following such event. Therefore, it is all the more important to not rely on such transient measurements of groundwater level for the design and construction of any underground improvements. Instead, it is recommended to make conservative assumptions in establishing groundwater depths for design and construction of this Project.

7.4 Project Site Seismicity

7.4.1 Ground Motions

The Project site is located in a seismically active part of northern California. Many faults exist in the region. These faults are capable of producing earthquakes and may cause strong ground shaking at the site. The Caltrans Fault Database (V2b, 2012) and Acceleration Response Spectrum (ARS) Online (V2, 2012) contain known active faults (if there is evidence of surface displacement in the past 700,000 years) in the State. Table 7.4 summarizes active faults in the close vicinity of the Project site with use of the Caltrans ARS Online (V2, 2012) and with the middle of Mathilda Avenue as a reference point. The maximum moment magnitudes represent the largest earthquake that a fault is capable of generating and is related to the seismic moment. The attached Caltrans ARS Online Map, Plate No. 5, shows the location of the fault system relative to the Project site.

TABLE 7.4 - CALTRANS ARS ONLINE DATA					
Fault Name	Fault ID	Max. Moment Magnitude (M _{max})	Fault Type	Approx. Distance R _{rup} /R _x (miles)	
San Andreas (Peninsula) 2011 CFM	134	8.0	SS	9.68/9.68	
Silver Creek	148	6.9	SS	4.56/4.56	
Hayward (Southern extension)	149	6.7	SS	8.16/8.16	
Cascade fault	153	6.7	R	3.94/3.94	
Monte Vista-Shannon	154	6.4	R	5.35/5.34	

TABLE 7.4 - CALTRANS ARS ONLINE DATA

 $R_{rup} = Closest distance to fault rupture plane$

 R_x = Horizontal distance to the fault trace or surface projection of the top of rupture plane

SS = Strike-slip fault

R = Reverse fault

7.4.2 Ground Rupture

The Project site is not within the State designated Alquist-Priolo Earthquake Fault Zones. Based on the Caltrans ARS Online report (V2, 2012), no mapped evidence of active or potentially active faulting was found for the site. The closest fault is Cascade fault that lies at approximately 3.94 miles

southwest of the Project site. Therefore, the potential for surface fault rupture at the Project site appears to be low. The impact of the earthquake is considered to be minimal with regard to the roadway widening project. Roadway maintenance should be expected if pavement distress or damage occurred after seismic events.

8.0 GEOTECHNICAL ANALYSIS AND DESIGN

8.1 Dynamic Analysis

8.1.1 Parameter Selection

No major structures are proposed for this Project. A design acceleration response spectrum (ARS) for structures is not required for roadway widening. However, the Caltrans ARS online tool (2012) was used to estimate the peak ground acceleration (PGA). Based on the soil boring data, an average shear wave velocity for the upper 100 feet of soils (V₃₀) at the Project site was estimated to be 200 m/s according to the guidelines presented in Caltrans Methodology for Developing Design Response Spectrum for Use in Seismic Design Recommendations (2012). The PGA at the Project site was estimated to be approximately 0.58g. The estimated earthquake magnitude at zero period is 6.6. The above seismic parameters represent a hazardous level of 5 percent in 50 years probability of exceedance (or 975 year return period). Caltrans standard plans for retaining walls and bridge standard detail sheets ("XS" sheets) for a sound wall supported on retaining wall are applicable to sites with a ground peak acceleration of 0.6g and less. The Caltrans bridge standard detail sheets are applicable for a sound wall for this Project.

8.1.2 Analysis

Modification of the northbound and southbound US 101 ramps to Mathilda Avenue requires new embankment fill up to 10 feet in height. Global slope stabilities were analyzed using the Slope/W V8 program by Geo-Slope International (2007) with Spencer method. The Spencer method satisfies both moment and force equilibriums. The embankment slopes with drained (static) and undrained (pseudo-

static) soil conditions were evaluated based on the subsurface profiles encountered in Borings R-17-003 and R-17-011 drilled in the embankment fill areas. Per Caltrans Guidelines for Structure Foundation Reports (2009), a seismic factor equal to one third of the horizontal peak acceleration and not exceeding 0.2g shall be used for pseudo-static slope stability analysis. The site with a pseudo-static factor of safety equal to or greater than 1.1 shall be considered to have adequate stability. A seismic coefficient of 0.2g, equal to 1/3 PGA (PGA=0.58g at the Project site), was adopted for the pseudo-static slope stability analysis. The analysis produced factors of safety greater than 1.5 under both static and pseudo-static conditions, which suggests that the embankment slope stability would be acceptable during the service and seismic events. The computer printouts of the slope stability analysis are attached in Appendix D.

8.1.3 Liquefaction Potential

Liquefaction is a phenomenon in which saturated cohesionless soils are subject to a temporary but essentially total loss of shear strength under the reversing, cyclic shear stresses associated with earthquake shaking. Submerged cohesionless sands and silts of low relative density are the type of soils, which usually are susceptible to liquefaction. The susceptibility increases with decreasing relative density (reflected by the number of blows to drive a sampler), and decreasing fines contents. According to the AASHTO Bridge Design Specifications (BDS, 2012), sandy or silty soils with corrected SPT blow counts equal to or less than 25 is susceptible to liquefaction. Clays are generally not susceptible to liquefaction.

The liquefaction potential for the Project was evaluated on relatively deep soil borings (25.5 to 41.5 feet deep) according to the procedure proposed by Youd, et al. (2001). The sandy soils encountered in Borings R-17-003 (approximately from 13 to 18 feet deep), R-17-013 (approximately from 22.5 to 25.5 feet deep), and R-17-015 (approximately from 13 to 22 feet deep) appear to be potentially liquefiable. The estimated post-liquefaction settlement is about 1 to 3 inches within the boring depths drilled. Potentially liquefiable soils were generally not encountered in other borings drilled for the Project. The liquefaction analysis results are provided in Appendix D.

The Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, California (Witter et al., 2006), were referred to in evaluation of the liquefaction potential at the Project site. According to these maps, the liquefaction susceptibility is classified as "high" for the Latest Holocene alluvial fan deposits and "very high" for the Modern stream channel deposit. The liquefaction susceptibility is classified as "very low" to "low" for the Early Quaternary deposits and Late Pleistocene deposits, and "moderate" for the Late Pleistocene deposits and Holocene deposits. It appears that the Project site is situated in a zone having moderate liquefaction susceptibility. A Liquefaction Susceptibility Map, part of the publication pertinent to the site, is attached on Plate No. 6.

In our opinion, liquefaction potential exists only at isolated locations at the Project site. Since no major structures are planned for this Project (except a sound wall replacement and two overhead sign structures), localized post-liquefaction settlement should have minor impact to the Project. For a roadway widening project, there is no need to implement a mitigation program and the aerial type of settlement can be repaired in a routine maintenance program, if necessary. The soil liquefaction impact on the sound wall and overhead sign structures should be minor. The sound wall and overhead sigh structures can be repaired if damaged during a seismic event.

8.2 Cut and Excavation

No major unsupported cuts and excavations are planned for the Project.

8.2.1 Stability

The subject was considered and was determined to be not applicable to the Project.

8.2.2 Rippability

The proposed excavations are anticipated to be in native soils or roadway fills. Rippability does not appear to be a concern for construction.

8.2.3 Grading Factor

Fills may be imported from outside borrow sources. The source of borrow is unknown at the time of report preparation. Usually, the volume of imported borrow will shrink after compaction at the job site. Based on previous experience, for preliminary estimate, a grading factor of 0.9 may be assumed for import materials. The on-site materials, if tested to meet the criteria of imported borrow, can be treated as imported borrow.

8.3 Embankments

The proposed US 101 off-ramp modification requires embankment fill not exceeding 10 feet high. Borings R-17-003 and R-17-011 were drilled at the northeast and southwest quadrants of the Mathilda Avenue and US 101 intersection, respectively, where the embankment fill is required. Boring R-17-015 was also drilled close to the new fill area northeast of the Mathilda Avenue and US 101 intersection. Settlement due to the new fill is estimated to be about 2 to 3 inches in the upper about 25.5 to 36.5 feet thick of soils (maximum depths drilled). Most settlement is in the over-consolidation range and should occur during fill placement. Less than about 0.5 inches of settlement is in the normally-consolidated range and should occur after the fill placement is completed, which is considered to be tolerable to roadway pavement and structures. The impact of fill settlement on the embankment should be insignificant. The settlement estimation as well as the time required for normal consolidation stabilization of soils are contained in Appendix D.

The Caltrans Highway Design Manual (HDM 2015), Topic 304 "Side Slope", provides information regarding the embankment slope gradient. In our opinion, the fill slopes should not be steeper than 2H:1V. Slopes up to 1.5H:1V may be workable if they are protected by asphalt or concrete paving. It should be noted that local irregularities such as loose layers and pockets and seepage might require flatter slopes. Proper drainage and erosion control measures are important to maintain the overall stability of the slopes. Regular slope maintenance is important and should be planned. Landscaping should be planned to protect the new slopes.

The embankment fill should be placed in accordance with the guidelines provided in the Caltrans Standard Specifications and Highway Design Manual. Fills to be placed on existing slopes should be keyed and benched into the slope. For the fill to be placed on existing slopes (not behind a retaining wall), it is recommended that the fill to be placed on the slopes be over-built and cut back to the proposed grade to improve compaction of the slope face. Appropriate drainage should be provided for the embankments.

8.4 Earth Retaining System

The originally proposed retaining wall northwest of the Mathilda Avenue and US 101 intersection is eliminated and instead, a standard concrete barrier Type 60C is proposed with grading behind the barrier. Refer to Caltrans standard plan A76A (2015) for subgrade preparation underneath the barrier. A portion of existing sound wall replacement will be supported on retaining walls, which is discussed in a separate foundation report.

8.5 Culverts

8.5.1 Corrosion Investigation

Uncoated subsurface steel and concrete structures are susceptible to corrosion based on the moisture content, texture, acidity, electrical conductivity, and sulfate and sodium content of the soil. The corrosion investigation was performed on selected soil samples in general accordance with the provisions of California Test Methods 643, 417 and 422. Table 8.1 presents a summary of the corrosion test results.

Boring No.	Depth (ft)	рН	Minimum Resistivity (ohms-cm)	Chloride Content (ppm)	Sulfate Content (ppm)
R-17-006	6	7.80	1,980	135.6	80.5
R-17-009	11	7.69	1,260	9.8	45.5
R-17-013	3	7.33	860	3.3	10.1

TABLE 8.1 - CORROSION TEST RESULTS

Boring No.	Depth (ft)	рН	Minimum Resistivity (ohms-cm)	Chloride Content (ppm)	Sulfate Content (ppm)
R-17-014	10	7.59	1,500	11.4	52.3

Caltrans defines a corrosive area in terms of the resistivity, pH, and soluble salt content of the soil and/or water. For structural elements, the Caltrans Corrosion Guidelines (2015) considers a site to be corrosive for foundation if one or more of the following conditions exist for the representative soil samples taken at the site:

- Chloride concentration is greater than or equal to 500 ppm
- Sulfate concentration is greater than or equal to 2,000 ppm
- pH is 5.5 or less

Based on the test results, the on-site subsurface materials are considered non-corrosive. The guidelines presented in the California Amendments to the AASHTO BDS (2012), Section 5.12.3, for the minimum cement factor and cover thickness may be used for the substructures.

8.5.2 Culverts

For selection of pipe material for culvert and storm drain applications, it is our understanding that the AltPipe computer program is used by Caltrans to assist designers. The AltPipe program is a web-based tool (*http://dap1.dot.ca.gov/design/altpipev7/*). The computations performed by AltPipe are based on the procedures and California Test Methods described in Chapter 850 of the Caltrans HDM (2015). The AltPipe program is intended for use during the final design. In addition to soil corrosivity data, required input data includes abrasion level, 2 to 5 year storm flow velocity, and height of cover, which should be determined while finalizing the drainage design. The AltPipe analysis results are provided in Appendix G.

8.6 Minor Structure Foundations

8.6.1 Overhead Sign Structures

Two single post type overhead sign structures are proposed. The sign structures will be supported on CIDH concrete piles using Caltrans standard plans. The information of sign structures and foundation recommendations are presented in Table 8.2. The CIDH concrete piles for overhead sign structures are subject to vertical loads, lateral loads, bending moments, and torsion moments. Analysis was performed for behavior of the piles based on the loads provided by the Design Team (Table 8.3) and subsurface soil conditions. The calculations show that the pile capacities developed from the friction resistance are adequate for vertical and torsional load demands.

Sign Structure	Approximate Location	Post Type	Pile Dia. (in)	Pile Cut- off Elev. (ft)	Pile Depth (ft)	Reference Standard Plans	Reference Soil Boring						
OS2-2 (Lightweight OH Sign)	75.27 Rt "M1" 48+50	NPS 14 " $^{+}$ " = $^{3}/_{4}$ "	36	31.0	16	S48, S49	R-17-003 R-17-010						
OS4-1 (Lightweight OH Sign)	43.96 Lt "M1" 70+31	NPS 14 " $^{+}$ " = $^{3}/_{4}$ "	36	18.5	16	S48, S49	R-17-006						

 TABLE 8.2 - SIGN STRUCTURE FOUNDATION RECOMMENDATIONS

INDLE 0.5	LOUDDINI IOI	OFTILL
	Load	OS2-2 OS4-1
DL only	Vertical (kips)	5.9
DL only	Moment (k-ft)	31.0
	Vertical (kips)	
DL + LL	Moment (k-ft)	
	Vertical (kips)	5.9
DL + Wind	Shear (kips)	3.9
	Torsional Moment (k-ft)	46.4

TABLE 8.3 – LOADS AT TOP OF PILE

Geotechnical Design & Materials Report

Mathilda Avenue Improvements at SR 237 and US101 Job No. 2014-129-PSE January 8, 2018 Page 30

Load	OS2-2 OS4-1
Resultant Moment (k-ft)	77.0

The lateral pile capacity was analyzed using the LPILE V6.0 computer program. The geotechnical soil parameters in Tables 8.4, and 8.5 were adopted for the LPILE analysis. Both *p*-multiplier and *y*-multiplier were taken as 1.0. The LPILE analysis results show that the top pile deflections are less than 0.25 inches that are considered acceptable. The subsurface conditions were thus adequate for the use of Caltrans standard foundation for the two sign structures. The pile capacity calculations and LPILE analysis computer printouts for the two sign structures are included in Appendix D.

Approx. Elevation (ft)	Generalized Soil Profile	LPILE Soil Type	Soil Strength	K (pci)	E ₅₀ (in/in)	Effective Unit Wt. (pcf)
31 to 23	Lean Clay	Stiff Clay w/o Free Water (Reese)	C = 1,400 psf	N/A	Default	125
23 to 18	Lean Clay	Soft Clay (Matlock)	C = 500 psf	N/A	Default	62
18 to 13	Silty Sand	Sand (Reese)	$\phi = 28^{\circ}$	Default	N/A	62
13 to 0.5	Lean Clay	Mod. Stiff Clay w/o Free Water	C = 700 psf	N/A	Default	62

 TABLE 8.4 – LPILE PARAMETERS FOR OS2-2 (Boring R-17-003)

TABLE 8.5 – LPILE PARAMETERS FOR OS4-1 (Boring R-17-006)

Approx. Elevation (ft)	Generalized Soil Profile	LPILE Soil Type	Soil Strength	K (pci)	E50 (in/in)	Effective Unit Wt. (pcf)
20 to 12	Lean Clay	Stiff Clay w/o Free Water (Reese)	C = 1,500 psf	N/A	Default	125
12 to 2	Lean Clay	Stiff Clay w/o Free Water (Reese)	C = 1,500 psf	N/A	Default	62
2 to -4	Lean Clay	Mod. Stiff Clay w/o Free Water	C = 700 psf	N/A	Default	62

Approx. Elevation (ft)	Generalized Soil Profile	LPILE Soil Type	Soil Strength	K (pci)	E50 (in/in)	Effective Unit Wt. (pcf)
-4 to -11.5	Lean Clay	Mod. Stiff Clay w/o Free Water	C = 850 psf	N/A	Default	62

8.6.2 Sound Wall

A portion of existing sound wall would be replaced with a sound wall supported on retaining wall (Type 5SWB), retaining wall (Type 7SW), or concrete barrier (Type 736SV on cast-in-drilled-hole (CIDH) concrete piles) to accommodate realignment and widening of the northbound US 101 off-ramp to Mathilda Avenue. Caltrans bridge standard detail sheets will be used for special design of the sound wall. The design of sound wall is discussed in a foundation report under a separate cover.

8.6.3 CIDH Piling

Refer to Section 12.7 for construction of CIDH concrete piles. Entering into CIDH holes for excavation or inspection is not anticipated for this Project. The overhead sign structure locations can be classified as "potentially gassy" according to Tunnel Safety Orders specified in Section 110.12 of the Caltrans HDM (2015). It is advisable that proper Cal-OSHA or other regulating procedures be followed for notice of the classification and any special orders, rules, special conditions, or regulation to be used at the job site.

8.6.4 Other Minor Structures

Other minor structures for this Project may include traffic signal and lighting systems and minor drainage structures. The foundation design of these minor structures should be according to Caltrans or City standard plans. No geotechnical investigation is required.

9.0 STRUCTURAL PAVEMENT

9.1 Laboratory Tests on Subgrade Material

The bulk soil samples collected along Mathilda Avenue at the pavement subgrade level were screened in the laboratory, and three representative samples were tested for R-values. The tests result in R-values of 14 (B-2), 18 (B-6) and 28 (B-8). The subgrade soils appear to be mostly lean to fat clayey materials with moderately to highly expansive potential. In consideration of subgrade soil variation and uncertainty, an R-value of 10 is recommended for pavement design.

9.2 Recommended Structural Pavement Sections

Design Designation

In accordance with Caltrans HDM (2015) Topic 103, US 101 at the proposed northbound deceleration lane to the new Mathilda Avenue off-ramp has the following design designation:

ADT (2020) = 80,650 (one way) ADT (2040) = 87,200 (one way) DHV = 16,180 (2040) ESAL = 14,279,060 (20 year) D=50% T=3.9% V=70mph $TI_{20} = 12.5$

Climate Region = Central Coast

It is our understanding that flexible pavement sections with HMA surface will be used for this Project. According to the Caltrans HDM (2015), the top portion of HMA surface layer (maximum 0.20 feet)

Geotechnical Design & Materials Report

Mathilda Avenue Improvements at SR 237 and US101 Job No. 2014-129-PSE January 8, 2018 Page 33

can be replaced with a same thickness of Rubberized HMA (gap-graded). An R-value of 10 is adopted for pavement design of the on-site soil. The pavement sections should be designed not only to satisfy the structural adequacy but also thick enough to overcome soil expansive pressure. Based on the expansion pressure test results during the R-value test (B-2), the minimum covering thickness should be 2.10 feet. The design includes a layer of subgrade enhancement geotextile (SEG) Class B1 between the subgrade and base or subbase rocks if the pavement sections are supported on the on-site soil. If pavement sections are supported on a minimum of 4 feet of imported fill with a minimum of R-value of 15, no SEG is required. Tables 9.1, 9.2 and 9.3 provide recommended new HMA pavement sections. The calculations of structural pavement sections are attached in Appendix D.

New Ramps

	1	ABLE 9.1 - FI	LEXIBLE PA	VENIENI	SECTION	15 (20 yea	r design life)			
			Structural Pavement Sections (ft)								
Design Life (yr)	TI	Assumed R-value	Option 1 ¹		Option 2 ¹		Option 3 ¹				
			Full-Depth HMA ²	AS ⁴	HMA ²	AB	HMA ²	AB	AS		
20	10	10 (on-site soil)	1.25	1.0	0.55	1.75	0.55	0.75	1.10		
20	10	15 (import fill) ³	1.20		0.55	1.60	0.55	0.75	0.90		

110 \

HMA: Hot Mix Asphalt (Type A)

AB: Aggregate Base (Class 2) with R-value equal to 78

AS: Aggregate Subbase (Class 2) with R-value equal to 50

The design includes a layer of subgrade enhancement geotextile (Class B1) between subgrade and AB or AS if the 1. pavement sections are supported on the on-site soil.

The top portion of HMA can be substituted by Rubberized Hot Mix Asphalt, Gap-graded (RHMA-G) to the maximum 2. equal thickness of 0.20 feet if rubberized HMA is preferred.

The import fill underneath the design pavement sections must be a minimum of 4 feet thick. 3.

The AS is required to overcome the expansive soil pressure and to facilitate construction. 4.

Geotechnical Design & Materials Report

Mathilda Avenue Improvements at SR 237 and US101 Job No. 2014-129-PSE January 8, 2018 Page 34

NB 101 / Mathilda Ave. Off-Ramp Auxiliary Lane

TABLE 9.2 - FLEXIBLE PAVEMENT SECTIONS (20 year design life)

		Assumed	Structural Pavement Sections (ft)									
Design	TI		Option	Opti	on 2 ¹	Option 3 ¹						
Life (yr)		K-Value	Full-Depth HMA ²	AS ⁴	HMA ² AB		HMA ²	AB	AS			
20	12.5	10 (on-site soil)	1.60	1.0	0.65	2.30	0.65	1.00	1.40			
20	12.3	15 (import fill) ³	1.55		0.65	2.10	0.65	1.00	1.20			

HMA: Hot Mix Asphalt (Type A)

AB: Aggregate Base (Class 2) with R-value equal to 78

AS: Aggregate Subbase (Class 2) with R-value equal to 50

- 1. <u>The design includes a layer of subgrade enhancement geotextile (Class B1) between subgrade and AB or AS if the</u> pavement sections are supported on the on-site soil.
- 2. The top portion of HMA can be substituted by Rubberized Hot Mix Asphalt, Gap-graded (RHMA-G) to the maximum equal thickness of 0.20 feet if rubberized HMA is preferred.

3. The import fill underneath the design pavement sections must be a minimum of 4 feet thick.

4. The AS is required to overcome the expansive soil pressure and to facilitate construction

Mathilda Avenue and Moffett Park Drive

				Struc	tural Pav	ement See	ctions (ft)		
Design	TI	Assumed	Option	Opti	on 2 ¹	Option 3 ¹			
Life (yr)		R-Value	Full-Depth HMA ²	AS ⁴	HMA ²	AB	HMA ²	AB	AS
20	11.5	10 (on-site soil)	1.50	1.0	0.60	2.10	0.60	0.95	1.25
20	11.5	15 (import fill) ³	1.40		0.60	1.90	0.60	0.95	1.05

TABLE 9.3 - FLEXIBLE PAVEMENT SECTIONS (20 year design life)

HMA: Hot Mix Asphalt (Type A)

AB: Aggregate Base (Class 2) with R-value equal to 78

AS: Aggregate Subbase (Class 2) with R-value equal to 50

1. The design includes a layer of subgrade enhancement geotextile (Class B1) between subgrade and AB or AS if the pavement sections are supported on the on-site soil.

2. The top portion of HMA can be substituted by Rubberized Hot Mix Asphalt, Gap-graded (RHMA-G) to the maximum equal thickness of 0.20 feet if rubberized HMA is preferred.

3. The import fill underneath the design pavement sections must be a minimum of 4 feet thick.

4. The AS is required to overcome the expansive soil pressure and to facilitate construction.

It is our understanding that at some locations, a deep lift section is desirable to accommodate staging, traffic control, and constructability. While at the other locations due to utility concerns the sections

would need to be thinner. In addition, "Rapid Strength Concrete Base (RSCB) with final HMA lift is planned for sliver widening and narrow median areas. Based on our discussions with the VTA, City and Designer, additional pavement sections are provided in Table 9.4. Please note the recommendations in Table 9.4 are not regular design but to accommodate the construction needs.

				Struct	ural Paven	nent Sectio	ns (ft)			
Design	TI	Assumed	Option 4		Option 5			Option 6		
Life (yr)		R-Value	Full-Depth HMA	НМА	AB	SEG	НМА	RSCB	SEG	
20	11.5	10 (on-site soil)	2.50	1.50	0.33	B1	0.60	1.25	B1	

TABLE 9.4 - ADDITIONAL PAVEMENT SECTIONS OPTIONS (CITY'S R/W)

HMA: Hot Mix Asphalt (Type A) RSCB: Rapid Strength Concrete Base AB: Aggregate Base (Class 2) with R-value equal to 78 SEG: Subgrade Enhancement Geotextile Class B1

Subgrade pumping maybe encountered during earthwork construction depending on the weather, moisture condition of the subsurface soils, and surface drainage conditions. Equipment mobility may also be difficult if the subgrade is wet. In which case, the subgrade soils may require reworking, aeration, or over-excavation and replacing with SEG and AS (minimum 12 inches) to facilitate earthwork construction.

9.3 Existing Pavement Rehabilitation

The Project will rehabilitate Mathilda Avenue, as well as a portion of Moffett Park Drive (West) between Mathilda Avenue and Innovation Way. Some locations will need inlay and others overlay with paving fabric to maintain the existing grade. Any pavement rehabilitation under SR 237 would need inlay because of vertical clearance issues.

Engineering procedures for flexible pavement and roadway rehabilitation are discussed in the Caltrans HDM (2015) Topic 635. Rehabilitation strategies include overlay, mill and overlay, and remove and replace. If entire HMA surfacing and any portion of the base are to be removed, remove and replace should be conducted. Caltrans recommends that if the removal depth is more than 1 foot, the pavement sections be designed as new or reconstructed.

Geotechnical Design & Materials Report Mathilda Avenue Improvements at SR 237 and US101

Job No. 2014-129-PSE January 8, 2018 Page 36

A pavement deflection test was conducted by PEI on December 27 and 28, 2016 to determine the existing pavement structural adequacy. The test was conducted in each through travel lane in accordance with California Test Method 356 with Dynaflect method. HMA surfacing thicknesses are calculated based on the deflection measurements and Traffic Index, and adjusted for reflective crack retardation and ride quality if necessary. The current overlay design procedure is for a 10 year period. Adjustment is needed for a 20-year service life, in which the new HMA layer is expected to be thicker (generally 125-130 percent more). Alternative HMA overlay materials such as RHMA-G may be used to reduce the overlay thickness required (with limitation). The existing failed section showing cracks and severe deterioration would require a total dig-out and replacement with a full depth section before an overlay is applied. In general, if repair work area exceeds about 40 to 50 percent of the total area it is not considered to be cost effective for overlay. The areas that require a total dig-out should be confirmed prior to construction. A deflection analysis report discussing pavement structural evaluation and rehabilitation recommendations is prepared by PEI under a separate cover. Please refer to the PEI report contained in Appendix F for rehabilitation options.

PARIKH previously performed visual evaluation on the existing pavement conditions at the Project site and summarized the observations in a geotechnical memorandum in January 2015. The PARIKH memorandum is provided in Appendix E for reference.

10.0 MATERIAL SOURCES

There are several commercial sources of asphalt, concrete, and aggregate products in the area. Table 10.1 lists some of available commercial suppliers in the area.

Source	Location	Approx. Haul Distance (one way, mile)
Granite Construction, Co.	3800 Bassett Street, Santa Clara, CA 95054	5
Graniterock	11711 Berryessa Road, San Jose, CA 95133	8.5
Reed & Graham, Inc.	690 Sunol Street, San Jose, CA 95126	11

TABLE 10.1 - SOURCES OF IMPORTED BORROW

11.0 MATERIAL DISPOSAL

It appears that majority of fill sections will require imported borrow materials. Surplus of cutting materials can generally be hauled away and disposed to regular disposal sites. Any material generated during construction that is considered unsuitable as roadway subgrade, backfill, or topsoil should be properly disposed of offsite. Prior to excavating, materials should be tested for contamination in accordance with the recommendations of the environmental report. Disposal of aerially deposited lead (ADL) and other contaminated material (if any) is beyond the scope of this report.

Refer to the Final Preliminary Site Investigation report prepared by BASELINE, dated May 2017 for any potential hazardous waste materials located within the Project limits (including disposal of ADL, lead paint materials, asbestos materials, etc.) and proposed measures for hazardous materials management and disposal.

12.0 CONSTRUCTION CONSIDERATIONS

12.1 Construction Advisories

These sections are written primarily for the engineer responsible for preparation of plans and specifications. Since these sections identify potential construction issues related to the Project, it may also be of use to the Agency's representatives involved in monitoring of construction activity. The field investigation performed by this office primarily addresses design issues and was not planned specifically to identify construction issues.

The Project site is the existing city streets and highway ramps. Therefore, traffic control and construction staging is required to maintain traffic flow during construction. There are numerous utility lines at the site. The contractor should verify the utility lines, be aware of the existing conditions and plan the construction activities accordingly. It is possible that unknown old buried utilities or abandoned structures, concrete rubble, etc. are located at the site that require special equipment and additional efforts to remove them.

The borings encountered mostly clayey materials with sandy layers and roadway fill near the existing ground surface. In our opinion, conventional equipment maybe used to excavate the on-site subsurface materials. Localized subgrade pumping may be encountered during earthwork construction depending on the weather, subsurface moisture, and surface drainage conditions. Equipment mobility may also be difficult if the subgrade is wet. In such a case, the subgrade soils may require reworking, aeration, or over-excavation and replacing with dry granular fill to facilitate earthwork construction.

Prospective contractors for the Project must evaluate construction-related issues on the basis of their own knowledge and experience in the local area, on the basis of similar projects in other localities, or on the basis of field investigation on the site performed by them, taking into account their proposed construction methods and procedures. In addition, construction activities related to excavation and lateral earth support must conform to safety requirements of OSHA and other applicable municipal and State regulatory agencies.

12.2 Construction Consideration that Influence Specifications

All grading and compaction operations should be performed in accordance with the project specifications and the current Caltrans Standard Specifications. A geotechnical engineer or the Resident Engineer should observe all excavated areas during grading and perform moisture and density tests on prepared subgrade and compacted fill material.

Areas to receive fill should be clean of vegetation, shrubs, trees, and their roots. Zones of soft, organic or saturated soils could be encountered during site grading. Loose materials will be left after the removal of large trees. Where such conditions are encountered, deeper excavation may be required to expose firm soils. Deeper excavation may also be required in areas of demolition of existing structures.

Any fill materials imported to the Project site should be non-expansive, relatively granular material having a plasticity index of less than 15 and a minimum sand equivalent (SE) of 10. The maximum particle size of fill material should not be greater than 4 inches in largest dimension. It should also be

non-corrosive, free of deleterious material and should be reviewed by the Geotechnical Engineer. In addition, imported fill within 4 feet of pavement subgrade should have a minimum R-value of 15.

The contractor should verify the existing utility line conditions, and these locations should not be used for stockpiling of borrow materials. Any utility conflicts with proposed construction should also be reviewed prior to construction. There may be excavations that are proposed near existing utility lines. Contractor should take precautions to protect the utilities from damage caused by such excavations.

12.3 Waiting Period

As discussed in Section 8.3, the proposed US 101 off-ramp modification requires embankment fill not exceeding 10 feet in height. Most settlement would occur during fill placement and less than about 0.5 inches of settlement would occur after the fill placement is completed in the normally consolidated range. Based on our previous experience with Caltrans projects, a standard waiting period of 30 days prior to foundation and pavement construction is recommended. The waiting period serves as a contingency for the estimated consolidation settlement within the over-consolidated range.

12.4 Working Platform

Soft and loose, saturated native soil deposits may be encountered at the bottom of excavation. In such case, working conditions at the bottom of excavation may become difficult; equipment used at the bottom of the excavation may lose mobility, etc. The contractor should take adequate measures to minimize the disturbance of the sensitive deposits at the excavation subgrade. The contractor may minimize the disturbance of sensitive deposits or mitigate existing soft ground conditions by constructing a working platform at the bottom of the excavation. The working platform may be installed by 1) over excavating about 2 feet below the planned subgrade; 2) placing a stabilizing subgrade enhancement geotextile at the bottom of the resulting excavation; 3) backfilling with 2-inch crushed rock, compacted AB, or other such approved bridging material. The contractor may use other methods of subgrade stabilization. The contractor's proposed method should be reviewed by the geotechnical engineer.

12.5 Construction Dewatering

Groundwater may rise up to above the footing excavation. Groundwater may cause instability of excavation walls and bottom (piping, erosion, blow-outs, etc.) and difficult working conditions. For excavation below the groundwater table, construction dewatering will be required. The contractor should evaluate the subsurface conditions before selecting a dewatering method, which may include shoring, sumps or tremie slabs. Groundwater should be lowered to at least 2 feet below the bottom of excavation to prevent wet soil condition. Designing dewatering system should be the contractor's responsibility. Design dewatering system should be the contractor's responsibility. The Caltrans Standard Specifications (2015), Section 19-3.03B(5), provides guidelines for water control and foundation treatment.

All dewatering systems should be properly designed to prevent pumping soil fines with the discharge water. The contractor should sample and test the groundwater for soil fines content from the discharge, as needed. If soil fines are pumped, the contractor should revise their dewatering operations. Otherwise, failure of shoring, partial instability of trench bottom resulting in intolerable ground settlement / movement of existing utilities and unsafe working conditions may occur. The contractor should provide discharge sampling locations for each pump. The contractor is encouraged to perform their own investigation, test program, etc. prior to construction in order to satisfy their design requirements for an effective dewatering program. Contractor should confirm the design groundwater level (for shoring) prior to actual construction.

12.6 Temporary Excavation and Shoring

Excavation will be required for installation of foundations. According to OSHA Safety Standards, temporary excavations with personnel working within the excavations should be sloped or shored if the excavations are deeper than 5 feet. All excavations for the Project should be made and supported in accordance with OSHA standards. For excavations up to 20 feet deep in homogenous soils, OSHA guidelines state that the maximum allowable slope should be 1H:1V for clayey soils and 1.5H:1V for sandy soils. It should be noted that the slope ratio recommended by OSHA is for temporary,

unsurcharged slopes and properly dewatered conditions. Traffic and surcharge loads should be set back at least 15 feet from the top of the excavations unless they are accounted for in the design. Flatter trench slopes may be required if seepage is encountered during construction or if exposed soils conditions differ from those encountered by test borings. The excavation should be closely monitored during construction to detect any evidence of instability, soil creep, settlement, etc. Appropriate mitigation measures should be implemented to correct such situations that may cause or lead to future damage to facilities, utilities and other improvements.

A shoring system may be necessary for the excavation. The selection, design and performance of shoring system should be the responsibility of the contractor. The contractor should have the shoring system designed and signed by a registered civil engineer in California. The shoring system should be designed to be relatively rigid and with as many supports or struts as necessary to prevent excessive straining and deformation of the supported soils. Trench boxes/shields are not recommended since they are primarily for protection of workers from cave-ins and similar incidents and do not provide support to the excavations.

12.7 Construction of CIDH Concrete Piles

Caltrans standard specifications (2015) Section 49-3 "Cast-in-Place Concrete Piling" should be referred to for construction of CIDH concrete piles. The contractor should carefully examine the subsurface conditions and make their own interpretation and perform independent study on the constructability of the piles.

Due to presence of granular material and groundwater, raveling or caving is expected, which may require additional drilling and cleaning effort and may increase the concrete volume for the piles. The use of temporary steel casing and/or slurry displacement method should be anticipated at all times to maintain the integrity of the piles. It is prudent to make the contractor aware of these conditions so that they take appropriate steps to comply with the standards and maintain the integrity of the CIDH concrete piles. Mitigation and repair procedures for CIDH anomaly should be anticipated. All pile

excavations should be observed by a geotechnical engineer prior to the placement of reinforcement and concrete so that if conditions differ from those anticipated, appropriate recommendations can be made.

Vertical inspection pipes for acceptance testing should be provided in all CIDH piles that are 24 inches in diameter or larger, except when the holes are dry or when the holes are dewatered without use of temporary casing to control groundwater. The acceptance test should include Gamma-Gamma Logging and may also include cross-hole sonic logging. Gamma-Gamma Logging should be performed in accordance with California Test Method 233 Standard (CT 233) to check the integrity of CIDH concrete piles. CT 233 defines pile rejection criteria based on the statistical principles of mean and three standard deviations to analyze the homogeneity of a pile. Anomalies detected should be evaluated by the Designer for their significance and potential impact on design and to see if mitigation plans are required. Details of the acceptance testing and Gamma-Gamma Logging are contained in Caltrans specifications and CT 233.

12.8 Construction Monitoring and Instrumentation

In general, the construction subject of monitoring and instrumentation was considered and was determined to be not significant for the Project. However, contractors may need to monitor their excavations that are in near proximity to existing utilities or other improvements.

12.9 Hazardous Waste Considerations

No hazardous waste was observed during the filed investigation. Refer to the Preliminary Site Investigation report (BASELINE, 2017) for any potential hazardous waste materials located within the project limits (including disposal of ADL, lead paint materials, asbestos materials, etc.) and proposed measures for hazardous materials management and disposal.

12.10 Differing Site Conditions

The soil conditions described in this report are based on available boring data. It should be noted that

these borings depict subsurface conditions only at the locations drilled. Because of the variability from place to place within soils in general, and the nature of geologic depositions, subsurface soil conditions could change between the explored locations.

Early communication should be made between the Resident Engineer, the Contractor and the Geotechnical Engineer as soon as conditions that differ from those established in this report are recognized by any of the parties. Additional recommendations could be provided if such conditions arise.

13.0 RECOMMENDATIONS AND SPECIFICATIONS

13.1 Summary of Recommendations

If the Designer has questions or concerns regarding any of these recommendations, or, if conditions are found to be different during construction, the Geotechnical Engineer who prepared this report should be contacted. Additional fieldwork, analysis or changes in recommendations may be required. These services may be provided under a separate authorization, as necessary. A concise summary of the geotechnical recommendations is presented below:

- Peak ground acceleration = 0.58g;
- Mean earthquake moment magnitude at zero period = 6.6;
- Soil boring data indicate that the subsurface soils consist of predominantly clayey soils with isolated sandy layers;
- Groundwater was encountered at depths of approximately from 8.5 to 13 feet (Elev. 10 to 25 feet) during drilling (2017);
- Soil liquefaction potential is considered to have minor impact on the Project;
- Caltrans standard plans can be used for design and construction of overhead sign structures;
- Normally consolidated settlement after the embankment fill placement is completed is about 0.5 inches that is considered to be tolerable; and
- The structural pavement sections for the Project include flexible pavement sections (Section 9).

13.2 Recommended Material Specifications

Unless otherwise stated, all materials specifications should conform to the Caltrans Standard Specifications (2015), including but not limited to the following: Earthwork, Structure Backfill, Pervious Backfill Material, Geotextile, Thermoplastic Pipes, Concrete, bond breaker, Hot Mix Asphalt, Aggregate Base, Aggregate Subbase, and Lean Concrete Base, etc.

14.0 INVESTIGATION LIMITATIONS

Our services consist of professional opinions and recommendations made in accordance with generally accepted geotechnical engineering principles and practices and are based on our field exploration and the assumption that the soil conditions do not deviate from observed conditions. No warranty, expressed or implied, of merchantability or fitness, is made or intended in connection with our work or by the furnishing of oral or written reports or findings.

The scope of our services did not include any environmental assessment or investigation for the presence or absence of hazardous or toxic materials in structures, soil, surface water, groundwater or air, below or around this site. An Initial Site Assessment report has been prepared by others.

Unanticipated soil conditions are commonly encountered and cannot be fully determined by taking soil samples and excavating test borings. Differing soil conditions may require that supplemental funds be made for the construction phase to perform additional investigation if required.

This report has been prepared for the proposed Project as described earlier, to assist the engineer in the design of this Project. In the event any changes in the design or location of the facilities are planned, or if any variations or undesirable conditions are encountered during construction, our findings and recommendations shall not be considered valid unless the changes or variations are reviewed and our recommendations modified or approved by us in writing.

This report is issued with the understanding that it is the Designer's responsibility to ensure that the information and recommendations contained herein are incorporated into the Project and that necessary steps are also taken to ensure that the recommendations are implemented during construction.

The findings in this report are valid as of the present date. However, changes in the soil conditions can occur with the passage of time, whether they are due to natural processes or to the works of man, on this or adjacent properties. In addition, changes in applicable or appropriate standards occur, whether they result from legislation or from the broadening of knowledge. Accordingly, the findings in this report might be invalidated, wholly or partially, by changes outside of our control.

Respectfully submitted, PARIKH CONSULTANTS, INC.

Peter Wei, PE, GE 2922 Sr. Project Engineer

Y. Javid Wa

Y. David Wang, PhD, PE 52911 Project Manager

Geotechnical Design & Materials Report

Mathilda Avenue Improvements at SR 237 and US101 Job No. 2014-129-PSE January 8, 2018 Page 46

REFERENCES

- Caltrans, 2006, Guidelines for Preparing Geotechnical Engineering Reports.
- Caltrans, 2009, Guidelines for Structure Foundation Reports.
- Caltrans, 2010, Soil & Rock Logging, Classification, and Presentation Manual.
- Caltrans, 2012, ARS Online V2.3.06, (<u>http://dap3.dot.ca.gov/shake_stable/v2/index.php</u>), accessed February 2016.
- Caltrans, 2012, Fault Database, V2b.
- Caltrans, 2012, Methodology for Developing Design Response Spectrum for Use in Seismic Design Recommendations.
- Caltrans, 2014, Geotechnical Manual.
- Caltrans, 2015, Corrosion Guidelines.
- Caltrans, 2015, Highway Design Manual.
- Caltrans, 2015, Standard Specifications.
- California, 2012, Amendments to AASHTO LRFD Bridge Design Specifications, 6th Edition.
- California Department of Water Recourses, 2006, Bulletin 118.
- California Geological Survey, 2006, Maps of Quaternary Deposits and Liquefaction Susceptibility in the Central San Francisco Bay Region, California, USGS Open-File Report 06-1037, by Witter, R.C.; Knudsen K.L.; Sowers, J.M.; Wentworth, C.M.; Koehler, R.D.; and Randolph, C.E.
- California Geological Survey, 2008, Earthquake Shaking Potential for California.
- California Geological Survey, 2010, Fault Activity Map of California, Geologic Data Map No. 6, Compilation and Interpretation by Jennings, C. W. and Bryant, W. A.
- California Geological Survey, 2010, Geologic Map of California, Geologic Data Map No. 2, Compilation and Interpretation by Jennings, C. W. (1977).
- California Seismic Safety Commission (CSSC), CGS, Governor's Office of Emergency Services (OES), and United States Geological Survey (USGS), 2003, Earthquake Shaking Potential for the San Francisco Bay Region Counties.
- Dibblee, T. W. and Minch, J. A., 2007, Geologic Map of the Palo Alto and Mountain View Quadrangles, Alameda, San Mateo and Santa Clara Counties, California; Dibblee Geological Foundation, Map DF-350, Scale 1:24,000.
- Ensoft, Inc., 2012, LPILE 2012.6.37.
- Geo-Slope International, 2012, Slope/W V8.14.1
- USDA, Natural Resources Conservation Service, Web Soil Survey, (<u>http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx</u>), accessed February 2016.
- USGS, 2008, Online Interactive Deaggregation Program (Beta), (<u>https://geohazards.usgs.gov/deaggint/2008/</u>), accessed February 2016.

Geotechnical Design & Materials Report

Mathilda Avenue Improvements at SR 237 and US101 Job No. 2014-129-PSE January 8, 2018 Page 47

- Western Regional Climate Center, Cooperative Climatological Data Summaries, Retrieved November 2015, (<u>http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca1967</u>).
- Youd, T. L. and Idriss, I. M., Co-Chairs, 2001, 'Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils,' ASCE, *Journal of Geotechnical and Geoenvironmental Engineering*, V. 127, No. 4, p 297-313.

Source: Web Soil Survey, Natural Resources Conservation Service, USDA http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx Santa Clara Area, California, Western Part 145 Urbanland-Hangerone complex, 0 to 2 percent slopes, drained W Motist Part Macon Rd State Hay 237 10 1 USDA SOIL MAP 1 000 0 1 2 12 CONTRACTOR OF STREET

MATHILDA AVENUE IMPROVEMENTS AT SR 237 AND US 101 SUNNYVALE, CALIFORNIA

JOB NO.: 2014-129-PSE

PLATE NO.: 2

Parikh Consultants, Inc.

Reference Map was provided by WMH Corporation , Inc.

PROJECT NO.: 2014-129-PSE

PLATE NO: 3A

LEGEND

R-17-006

Approx. Boring Location Drilled By Parikh Consultants, Inc.

SCALE: 1 inch = 200 feet

Note: All units are in feet unless otherwise specified Reference Map was provided by WMH Corporation , Inc.

MATHILDA AVENUE IMPROVEMENTS AT SR 237 AND US 101

SUNNYVALE , CALIFORNIA

PROJECT NO.: 2014-129-PSE

PLATE NO: 3B

R-17-013 Approx. Boring Location Drilled By Parikh Consultants, Inc.

SCALE: 1 inch = 200 feet

Note: All units are in feet unless otherwise specified Reference Map was provided by WMH Corporation , Inc.

иd5ч

MATHILDA AVENUE IMPROVEMENTS AT SR 237 AND US 101

SUNNYVALE , CALIFORNIA

PROJECT NO.: 2014-129-PSE

PLATE NO: 3C

APPENDIX A

APPENDIX B

NOTES:

Standard Penetration Test Sampler: I.D. = 1.4"; O.D. = 2" Modified California Sampler: I.D. = 2.5"; O.D. = 3" Hammer Assembly: A 140 Ib hammer with a 30" drop (Automatic Hammer)

This LOTB sheet was prepared in accordance with the Caltrans Soil & Rock, Logging, Classification, and Presentation Manual (2010)

See Caltrans 2015 Standard Plans A10F, A10G and A10H for Soil and Rock Legend.

All dimensions are in feet unless otherwise shown

Base map was provided by WMH.

<u>NOTES:</u>

												DIST COUNTY ROUTE	POST MILES SHEET TOTAL TOTAL PROJECT NO SHEETS 2.7/3.3
<u>NOTE</u>	<u>S:</u>										A	04 SCL 237, 101	45.2/45.8
Stand	lard Penetration Test Sam	npler: I.D	. = 1.4";									REGISTERED CIVIL ENGINEER	DATE LO PROFESSIONAL
O.D. = O.D. =	= 2" Modified California S = 3" Hammer Assembly: A 1	ampler: I 140 lb har	.D. = 2.5"; mmer with										ENG IN
a 30"	drop (Automatic Hammer)					R-17-01	0			R-17-009		PLANS APPROVAL DATE	Wo #
This l the C	LOTB sheet was prepared altrans Soil & Rock, Logg	in accord ing, Class	dance with sification,		0	•				: • • • • • • • • • • • • • • • •		The State of California or its officers shall not be responsible for the accurac completeness of scanned copies of this	or agents sy or plan sheet.
and P	resentation Manual (2010))			···.		MATHII	<u>D</u> A <u>A</u> ve _				VTA	
See C A10H	Caltrans 2015 Standard Pl for Soil and Rock Legend	ans A10F.	, A10G and $$		<u>}`</u> ,						HTT C	3331 N FIRST STREET, San Jose, CA 95134	BUILDING B
All di	imensions are in feet unl	ess other	rwise shown	— — 45 — — -		- (<u>×</u>	9				PARIKH CONSULTANTS, 2360 QUME DRIVE, SUI	INC. Te A
Base	map was provided by WMH.	•			A							SAN JOSE, CA 95131	
											EB 237		
				R-17-003)							
				INE	וארור א אוויר								
				 	1		D						
				N N		<u>≥</u>		LAN F: 1"=50'					
							00112						
						I							
					I					I			
	+ 80				Ι	~47+ M1" L				NE 85			
						sta *				~50+ /1" LI			
	t St									sta *			
10	.00. R					~48.(.00			
40 —	22 22				~Flev. 35.0'	R-17-010				~53.C	· · · · · · · · · · · · · · · · · · ·		- 40
	~Elev. 31.0'	17-003			:	4.5"	-ASPHALT CONC	RETE 8".	ım dense: brown		17-009		
30 —		<u></u>	Lean CLAY (CL); stiff; dark gray; mo plasticity fines; PP>4.5 tsf; (LL=39,	ist; medium to high Pl=22).	20 2.5	MUW	Fat CLAY (CH)	: stiff: dark aravish br	rown: moist: mer	4.5		E 10", AGGREGATE BASE 12".	— 30
	<u>GWS</u> <u>Elev.</u> ~22.5'	(UW) PI	Lean CLAY (CL); soft; gravish brown;	moist; medium <u>GWS</u>	Elev. ~23.0' 17 2.5	M	to high plastic	ity fines.	edium plasticity		plasticity fines; (L	L=54, PI=33).	
20 —	04-06-17 5 2.5 M		plasticity fines. ——SILTY SAND (SM): loose: aravish brov	vn; wet; fine	10 2.5	M	fines			<u>GWS-Elev. ~19.0'</u> <u>11 1.4</u> 03-27-17	CR)	very sillt; brown; moist; mealum	— 20
	<u>10 2.5</u>	PA	SAND; (+#4=1.8%, -#200∓46.1%). SANDY lean CLAY (CL): medium stiff	brown: fine SAND	13 2.5		(UC=1.05 tsf).			13 2.5 M	UW (UC) Fine GRAVEL. Stiff; wet; (UC=0.	6 tsf).	
(́д 10 —	9 2.5 M	(uw)	low plasticity fines.	f. dark grav wet	13 2.5		Gray.			9 2.5 W			− 10 _Ē
(FE	11 2.5 M	UW UC	medium to high plasticity fines; PP= (UC=0.50 tsf).	0.75 tsf;	11 2.5					8 2.5		· ·	
NO 0 —	14 1.4 M)	().				Stiff; light gra	y brown.			Light gravish brov	wn; (UC=0.6 tsf).	
ATI	04-06-17 Terminated at Elec	0.5'				(M)UW)	Light brown.				UW)	medium dense; brown; wet; some	TIOI
> 山 ー _ 1 0 —	ERi = 75%	/. ∼0.J								<u> </u>	Lean CLAY (CL);	medium stiff; light brown; wet; medium	▼ > 10 Ш
ш-то-					Terminated	-2/-1/ at Elev. ~-6.5'							
					- EK	= /0%				03-27-17 Terminated at Elev.	~-11.5'		
-20—										ERi = .70% -			—-20
- 30 —													— - 30
													PROFILE
	"M1" LINE												vert.: 1' = 10' Hor.: 1" = 50'
			44+00	45+00	46+00	47+00	48+0	0 49+(DO De The T	50+00 51+00	52+00 BRIDGE NO.		
DESIGN OVERSIGH	IT	DRAWN BY	KIM OUYANG	L. S. Bhangoo & V Field investigation by:	. SANTOS	_	Ist	ATE OF CAL	IFORNIA	PETER WEI	MATHILDA A	AVENUE IMPROVEMENTS AT	SR 237 AND US 101
SIGN OFF DATE		CHECKED BY	PETER WEI	DATE: MARCH TO APRIL	_ 2017		DEP	PARTMENT OF TRAN	SPORTATION			OF TEST BORIN	GS 2 OF 5
DESIGN GENERAL	PLAN SHEET (ENGLISH) (REV. 03/14/12)	-	-			ORIGINAL SCALE IN FOR REDUCED PLAN	N INCHES		1 U	JNIT: 0000 PROJECT NUMBER & PHASE: 0413000204	CONTRACT NO.: S13089	DISREGARD PRINTS BEARING EARLIER REVISION DATES	REVISION DATES SHEET OF
							v	· 2	'	FILE => LOTB, dgn			

<u>NOTES:</u>

Standard Penetration Test Sampler: I.D. = 1.4"; O.D. = 2" Modified California Sampler: I.D. = 2.5"; O.D. = 3" Hammer Assembly: A 140 lb hammer with a 30" drop (Automatic Hammer)

This LOTB sheet was prepared in accordance with the Caltrans Soil & Rock, Logging, Classification, and Presentation Manual (2010)

See Caltrans 2015 Standard Plans A10F, A10G and A10H for Soil and Rock Legend.

All dimensions are in feet unless otherwise shown

Base map was provided by WMH.

PLAN SCALE: 1"=50'

40 30 5 7 5 20												00+0,	LINE			
20 -Einer 2201 Einit 220 -Einer 2201 Einit 220 -Separation concerner einit (SM); (PR), (PR), (SM); (SM	40 -											00, Lt Sta	s L Wa			
Image: Sector Desistion: Sector Desistion: <td>20 -</td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td>~Elev.</td> <td>20.0'</td> <td>R-17-006</td> <td></td> <td>RETE 6"</td> <td></td>	20 -					 					~Elev.	20.0'	R-17-006		RETE 6"	
Image: Construction of the second state of the second s	(L 10 -					 				<u>GWS K</u> 03-2	<u>lev. ~10.0'</u> 8-17	32 2.5 28 2.5 25 2.5	MUW PI MUW CR	SILTY SAND wi Lean CLAY (CL plasticity fines) Wet.	h GRAVEL (SM);); very stiff; lig (LL=32, PI=13	; (Fill). 3ht brown; moist; 5).
Big 10 SILTY SAND (SM); medium dense; brown; w -10 -11 -20 -20 -30 -20 </td <td>ATION (F O</td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td>· · · · · ·</td> <td></td> <td></td> <td></td> <td>20 2.5</td> <td>MUW MUWUC</td> <td>Stiff. Medium stiff: (UC=0.70 tsf).</td> <td>prown.</td> <td></td>	ATION (F O					 		· · · · · ·				20 2.5	MUW MUWUC	Stiff. Medium stiff: (UC=0.70 tsf).	prown.	
-20 -30 "M1" LINE BRITE 70% ERMINING W1" LINE BRITE OF CALIFORNIA STATE OF CALIFORNIA DESIGN OFF DATE DESIGN OFF DAT	∧ - 10 - EF E					 		· · ·				33 2.5 14 2.5 03-2	8-17		M); medium der); stiff; brown;	nse; brown; wet; wet; medium pl
-30 ''M1'' LINE ''M1'' LINE 068+00 68+00 69+00 70+00 71+00 Design oversight SIGN OFF DATE Design general plan sheet (english) (rev. 03/14/12) Design general plan sheet (english) (rev. 03/14/12) Optimilian Optimilian Optimilian Optimilian Optimilian Optimilian Optimilian Optimilian Optimilian	-20-					 		· · · ·				ERi- =	- Elev. ~-11.5 - 70%			
DESIGN OFF DATE DRAWN BY KIM OUYANG L. S. Bhangoo & V. SANTOS PREPARED FOR THE STATE OF CALIFORNIA DEPARTMENT OF TRANSPORTATION PETER WEI BRI SIGN OFF DATE DESIGN (REV. 03/14/12) PETER WEI DATE: MARCH TO APRIL 2017 DESIGN (REV. 03/14/12) UNIT: 0000	- 30 -							<u>.</u>								
SIGN OFF Date CHECKED BY PETER WEI Date: MARCH TO APRIL 2017 DEPARTMENT OF TRANSPORTATION PROJECT ENGINEER POS Design general plan sheet (english) (Rev. 03/14/12) VIII 1: 0000	DESIGN OVERSI	GHT		DRAWN BY	KIM OUYANG	L. S. Bhan	ngoo & V. SANTO	S	68+00	69+	00 PRE	70- Pared 5 OF (FOR THE	71+00 Peter Wei		BRIDG
FILE > LOTB. dgn	SIGN OFF DATE DESIGN GENERA	L PLAN SHEET (ENGLISH) (REV.	03/14/12)	CHECKED BY	PETER WEI	DATE: MARCH	TO APRIL 2017		ORIGINAL SCALE IN IN FOR REDUCED PLANS	NCHES	DEPARTN	ENT OF 1	RANSPORTATI	PROJECT ENGINEE UNIT: PROJECT NUMBER FILE => LOTB.	R 0000 & PHASE: 0413(dgn	000204 CON1

DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET No	TOTAL SHEETS				
04	SCL	237,101	2.7/3.3 45.2/45.8						
REGISTERED CIVIL ENGINEER PLANS APPROVAL DATE The State of California or its officers or agents shall not be responsible for the accuracy or completeness of scanned copies of this plan sheet.									
VTA 3331 N FIRST STREET, BUILDING B San Jose, CA 95134 PARIKH CONSULTANTS, INC. 2360 QUME DRIVE, SUITE A SAN JOSE, CA 95131									

<u>NOTES:</u>

Standard Penetration Test Sampler: I.D. = 1.4"; O.D. = 2" Modified California Sampler: I.D. = 2.5"; O.D. = 3" Hammer Assembly: A 140 Ib hammer with a 30" drop (Automatic Hammer)

This LOTB sheet was prepared in accordance with the Caltrans Soil & Rock, Logging, Classification, and Presentation Manual (2010)

See Caltrans 2015 Standard Plans A10F, A10G and A10H for Soil and Rock Legend.

All dimensions are in feet unless otherwise shown

Base map was provided by WMH.

							Rt Sta 76+35	W1" Line					
40 —							- Elow 21 0'	⊊01	5				
30 —						<u>GWS,_∿Elev.</u> 04−06−17	~22.5' 23 2.5	<u>4.5</u> "	SANDY-lean -CLA fine SAND; medi Stiff; wet.	(-(CL);- very-stiff;-g um plasticity fines.	rayish-brown; -moist;		
20 — Ê 10 —							<u> </u>	M UW		; loose; brown; wet C); very loose; brow 00=31.0%).	; fine SAND. /n; wet; fine SAND;		
ION (FEE -							4 1.4 04-0 Terminated c	6-17 f Elev. ~5.5'	Lean CLAY (CL); plasticity fines.	soft; gray; wet; m	edium to high		
ELEVAT -10-							LRi =						
-20—													
- 30 —													
	"SW1" LINE					75+00	76+00	7.	; 7+00 78-	-00	79+00		
DESIGN OVERSIGH	T	DRAWN BY	KIM OUYANG PETER WEI	L. FIE DAT	S. Bhangoo & V. S LD INVESTIGATION BY: E: MARCH TO APRIL 2	SANTOS 017	_		PREPARED I STATE OF CA DEPARTMENT OF TR	OR THE	PETER WEI PROJECT ENGINEER		BRIDGE POST MI
DESIGN GENERAL	PLAN SHEET (ENGLISH) (REV. 03/14/12)			1			ORIGINAL SCALE II FOR REDUCED PLAN	I INCHES S	0 1 2	1 U 3 P	NIT: ROJECT NUMBER & PHAS FILE => LOTB.dgn	0000 5E: 0413000204	CONTR

	DIST	COUNTY	ROUTE	POST MILES TOTAL PROJECT	SHEET TOTAL NO SHEETS					
	04	SCL	237, 101	2.7/3.3 45.2/45.8						
,	REGISTERED CIVIL ENGINEER PLANS APPROVAL DATE The State of California or its officers or agents shall not be responsible for the accuracy or completeness of scanned copies of this plan sheet.									
	VTA 3331 N FIRST STREET, BUILDING B San Jose, CA 95134									
	PAR 236 SAN	IKH CON O QUME JOSE,	SULTANTS DRIVE, SU CA 95131	, INC. JITE A						

O.D. = 3" Hammer Assembly: A 140 lb hammer with

• • •

I HERENY CRETIFY THAT THIS IS A TRUE AND ACCURATE COPY OF THE ANOVE DOCUMENT TAKEN UNDER MY DIRECTION AND CONTROL ON THIS DATE IN SACRAMENTO, CALIFORNIA PURSUANT TO AUTHORIZATION BY THE DIRECTOR OF FURLIC WORKS.

1.2

. .

. .

ClibPDF - www.fastio.com

.

DATE /. SIGNATURE . . / TITLE

ClibPDF - www.fastio.com

	DIVISION OF ENGINEERING SERVICES - GEOTECHNICAL SERVICES	
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	As such, the State of California registration seal with signature, license number and registration certificate expiration date confirm that this is a true and accurate copy of the original document. This drawing is available and presented not state of the complement of the interaction of the inter	AL ETS
Provide the second seco	Other Parity Other Convenience of difference o	-
Provide the second seco	(2/29/2016 SITE PLAN FOR BORING LOCATIONS)	
	REGETERED OWL ENGINEER DATE	
	LOG OF TEST BORINGS IS MOTE: A COPY OF THIS LOG OF TEST BORINGS IS MAILABLE AT OFFICE oF STRUCTURE MAINTENANCE [E41 04-04/2900] In the State of Collignia or its of the fore conversion of the fore convers	H
Press entropy of the press of the	Sheet of PARIKH CONSULTANTS, INC.	
	C	
P-NG. PERSIM Representation Person Represen	9 Elev. 9.5 m± 5 2 127 ACREE to ver 178mm ASPHALT CONCRETE over 178mm Elev. 9.3 m± 5 2 05-6 20-7 127 102m ASPHALT CONCRETE over 51mm 9	
Ci C	20 64 1 - 6 1 29 64 1 20.1 8 SAND UTH GRAVEL (SM), medium plasticity (FILL) 52 64 1 22.1 12 Suffy Sand UTH GRAVEL (SM), medium plasticity (FILL) 30 64 2 19.3 25 - - 52 64 1 - 52 64 1 - <td></td>	
Top Not National - Puthed - Puthed - Pu	6 77 12 64 3 19.71 27 0 firm, yellowish brown, medium glasticity	
NS No cou	UC (LL=37, PI=15) 28 64 3 19.6 29 AL very stiff, high plasticity (LL=52, PI=28) 32 64 4 52 54 4 52 54	
PERATIO (W/m ²) utton test thomps houps a chones	3 Column dense, yellowish brown, wet 19.6 [22] The to medium dense, yellowish brown, wet 19.6 [22] The to medium dense, yellowish brown, wet 3 Column dense, yellowish brown, wet (44 64 4 321.3 17) Yellowish brown, wet	
ORING O Particle of me while weight - deathers - deathe	19.61 25 19.61 25 19.61 25 19.61 25 19.61 25 100 LEAN CLAY WITH SAND (CL), firm, gray, wet	
B-No. B-No. Porter Content Data Mark Content C	19 64 5 20.8 22 stiff 0 very stiff, light gray	
LEGEN Berling D Borny D	50 14 64 7 20.1 24 UC stiff 22 64 7 20.2 26 moist, low to medium plosticity T5/280 64 7 21.8 13	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 64 8 20.6 23 stiff -3 35 64 8 20.3 21 Incitied brown and gray, moist, low plasticity, trace fine grained sand 60 64 8 20.3 21	
Star 1 Confr Star 1 Confr Star 2 Star Star 2 Star Star 2 Star Star 2 Star Star 2 Star Ver Star 2 Star Ver	21 64 9 21.9 19 stiff 44 64 9 21.7 18 Lance LAY WITH SAND (CL), very stiff,	
Prevention (Uniting of the prevention drop, or the prevention of t	67 16 64 10 21.7 17 UD LEAN CLAY WITH SAND (CL), stiff, yellowish -6 29 64 10 20.7 22 very stiff, mottled gray and brown, trace fibers	
Chound weit auritors Law. ban of ban of taken	18 64 11 21.9 18 SANDY LEAN CLAY (CL), stiff, groy, wet, trace 62 64 11 20.8 20 hard 67 18 64 11 20.9 18 55 64 11 20.3 21 hard 60 61 60 61 60 61 <td></td>	
Do te Solution	32 64 12 21.1 21.2 -very stiff -9 -9	
P Hole EL	25 64 13 20.5 23 LEAN CLAY WiTH SAND (CL), very stiff, yellowish brown, wet 42 64 13 19.8 23 LEAN CLAY (CL), hard, brown, moist, medium plosticity, trace sand and nodules 60 64 13 20.1 23 hard	
To the second se	-12 Groundwater was not measured due to Rotary was horiling method	
Bloss Story Story Story Part Part Part Part Part Part Part Part	29 35 14 18.2 37 FAT CLAY (CH), very stiff, dark gray, moist, high plasticity 40 64 14 19.6 30 very stiff	
IT IN TONE ILE BORING ALE BORING ALE BORING PT PT PT BORING BORING BORING BORING BORING BORING BORING BORING BORING BORING BORING BORING BORING BORING BORING BORING BORING PT PT PT PT PT PT PT PT PT PT PT PT PT	-15 ALL DIMENSIONS ARE IN METERS	\$TIME
Province of the second	PROFILE UNLESS OTHERWISE SHOWN 52 64 15 20.2 23 SILTY CLAY WITH SAND (CL-ML), hard, olive brown, moist, low plasticity 45 64 15 20.6 21 very stiff	î ₽ 0
ALS ALT MATTER SBIAL SBIAL	Vert. 1 : 100 Hor. 1 : 500	LTOJ4 3
A MATER MATER	43 64 16 20.0 24 LEAN CLAY (CL), very stiff, olive brown, moist, medium plasticity, trace sand and nodules 49 64 16 20.1 26 LEAN CLAY WITH SAND (CL), hard, gray, wet 10	TIME
	Note: 	
EGEND O RANEL SAND SAND SAND SAND SAND SAND SAND SAND	Zi Modified California Sampler: I.D. = 64mm; 0.D. = 76mm hard, very dense Silty sond at Hammer Assembly: A 63.5 kg hammer with a 762 mm drop B9/279 64 17 20.3 18 SANDY LEAN CLAY (CL), hard, moist, low plasticity hard, very dense Silty sond at	ATE
	(Rope and Pulley) 07-07-05 07-07-05	<- \$D
CATION charlest Dotative Very Soft Firm Stiff Hord Cotrative for Stiff for Cotrative for Cotrative cotrative for cotrative for cotrative for cotrative for cotrative for cotrative for for for for for for for for for for	Groundwater was not measured Groundwater was not measured -24 due to Rotary was drilling method due to Rotary was drilling method -24	OTTED
CLASSIF SOILS SOIL	20+00 21+00 21+50 22+00 22+50	DATE PI
STENCY FOR to the Sta Convlor Convolor Convolor to Convolor to Con	PREPARED FOR THE BRIDGE NO.	R
CONSI According Vote According Accor	DESIGN OVERSIGHT STAMALA PAMPATI R. LIARD/L. BHANGOO CHECKED BY STAMALA PAMPATI R. LIARD/L. BHANGOO FIELD INVESTIGATION BY: DATE 07 05	SUS ==
280 さらたち ? CEOTECHNICAL LOG OF TEST BORINGS SHEET (METRIC) (RE	SIGN OFF DATE DEPARTMENT OF TRANSPORTATION 72.4 LOG OF IEST BORINGS 2 OF	RNAME
	FOR REDUCED PLANS 0 10 20 30 40 50 60 70 80 90 100 EA 44120 EARLER REVISION DATES	USE

-1

Caltrans	DIST 04	COUNTY	ROUTE	KILOMETER POS TOTAL PROJECT	T No	SHEETS							
etri	04			724 (45 0) [1							
	c 🔽	N		12.4 (45.0									
	PL A	HAR OLEY	PROFESSION	08-16-06	GARY PARIN	H CHIGHER							
لى ي	The Stor shall no	te of Colifornia o t be responsible	r its officers or ag for the accuracy o	ents + E	GEDTECHNIC	AL *							
3+09 Rt. BRIDC	Example teness of electronic copies of this plan sheet. PARIKH CONSULTANTS, INC. 356 SEDUTH MILPITAS BLVD MILPITAS CA 95035												
8-8-20 33 ta 5		T. 00100575			9								
127 J27 Gab mm GRA 1 19.0 27 FAT 2 19.5 24 AL sone	VELLY LEAN ish brown, CLAY (CH), ery stiff, bi I (LL=56, F	I CLAY WITH S dry (FILL) , stiff, black, rownish gray, 'I=34)	SAND (CL), moist, high pla trace nodules a	sticity	6								
3 19.5 25 00 LEA1 mois POO 4 20.7 14 SA fine	N CLAY (CL ot, medium RLY-GRADE ium dense, to coarse), firm, mottle plasticity, tra D SAND WITH grayish brown grained (+#4=	ed gray and bri ce nodules SILT (SP-SM), n, moist, =9%, -#200=79	5)	3								
5 19.4 25 Iow	Y CLAY (CL plasticity	.−ML), firm, g	ray, wet,										
6 19.0 30 LEAN med	CLAY (CL), firm, gray, ity, trace nodi	moist, ules		0								
7 20.6 22 UC SAN med	ium plastici DY SILT (MI	ity, fine to co .), very stiff.	brown, moist,										
B 20.6 20 nong	-GRADED	grained sand SAND WITH SIL	LT AND GRAVEL		-3								
1 9 20.0 11 SA (SW fine	to coorse	medium dense, brownish gray, wet, arse grained (+#4=15%, -#200=5%) Y (CL-ML), firm, brown, moist,											
11 20.0[22	prosticity, t tiff, mottle	race sand and	a grovel gray, moist,		-6	ters)							
12 19.4 26 LEAN	Plasticity, t	race nodules), very stiff, r nedium plastic	mottled gray ar	nd les		(me							
13 20.4 22	sand ard, mottle	d dark brown	and gray		-9	TION							
07-07-05			1		-12	ELEVA							
					-15								
					-18								
d Penetration Test California Sampler:	sampler I.D. =	: I.D. = . 64mm;	35mm; 0.1 0.D. = 76	D. = 50mm mm	-21								
Assembly: A 63.5 ind Pulley)	ky nah	inner with	1 U 702 II	ini urop	-24								
23+	-75												
SC	UTH	BORF	REGAS	AVE PC)C 								
	UG	OF It	21 B(JRINGS	3	UF 3							
PDINTE DE LEVIE	REV	SION DATES (PR	RELIMINARY STAGE	ONLY)	SH	EET OF							

	DIVISION OF ENGINEERING SERVICES - GEOTECHNICAL SERVICES As-Built Log of Test Borings sheet is considered an informational document only.
The second secon	A such, the State of California registration certificate exploriton dete confra this is a true and presented out of the conventence of any black contrast for the conventence of any black contrast convert for the conventence of any black contrast convert convente of any black contrast convert c
LECEND OF BORING OPERATIONS TO PLOTE PORTIONS Read From the first of	0 0
Provide the second seco	-9 138 28 64 10 20.4 22 10 20.4 22 10 20.4 22 10 20.4 22 10 20.4 22 10 20.4 22 10 20.4 22 10 20.4 22 10 20.4 22 10 20.4 20.4 10 20.2 23 LEAN CLAY With SAND (CL), stiff, montiled group, moist, mole should group, moist, medium platicity, trace fine groined sond group, moist, fine group, define group, moist, fine group, define group, moist, fine group, moist, fine group, moist, fine group, define group, moist, fine group, moist, fine group, moist, fine group, define group, moist, fine group, define group, moist, fine group, group, moist, fine group, moist, fine group, group, moist, fine
IALS Parent Contract Strem Cont Strem Cont Strem Cont	-18 -18 -18 -21 -21 FAT CLAY (CH), very stiff, mottled dark brown and gray, moist, high plasticity, trace sand very stiff, gray, low to medium plasticity, some silt very stiff, gray, low to medium plasticity, some silt Vert. 1 : 100 -21 Hor. 1 : 500 48 64 17 19.7 25 LEAN CLAY WTH SAND (CL), very stiff, brownish gray, wet, high plasticity very stiff, medium plasticity, trace fine silty sand approximately 100 mm thick very stiff, medium plasticity
TIDN LEGEND OF EARTHI MATE In test E.a. Band Carver Carver Carver Cohesine Suo Carver Cohesine Carver Cohesine Cohesine Suo Suo Cohesine Cohesine <t< th=""><th>ALL DIMENSIONS ARE IN METERS UNLESS OTHERWISE SHOWN Alt 64 18 19.6/25 very stiff 30 64 16 20.0/24 very stiff, low plasticity, fine grained sand Note: Modified California Sampler: I.D. = 64mm; O.D. = 76mm Hammer Assembly: A 63.5 kg hammer with a 762 mm drop (Rope and Pulley) -24 -24 -58 64 17 20.0/23 FAT CLAY (CH), hard, motiled dark gray and brown, moist, high plasticity -24</th></t<>	ALL DIMENSIONS ARE IN METERS UNLESS OTHERWISE SHOWN Alt 64 18 19.6/25 very stiff 30 64 16 20.0/24 very stiff, low plasticity, fine grained sand Note: Modified California Sampler: I.D. = 64mm; O.D. = 76mm Hammer Assembly: A 63.5 kg hammer with a 762 mm drop (Rope and Pulley) -24 -24 -58 64 17 20.0/23 FAT CLAY (CH), hard, motiled dark gray and brown, moist, high plasticity -24
CONSISTENCY CLASSIFICA FOR SOILS According to the Standard Penetrolico According to the Standard Penetrolico (2,3m) According to the Standard Penetrolico (3,3m) According to the Penetrolico (3,3m)	Integrate
UNUTROTHING LUG UT ILDI BURINGS SHEET (WETRIC) (R	ORIGNAL SCALE IN MILLIMETERS I

APPENDIX C

LABORATORY TESTS

Classification Tests

The field classification of the samples was visually verified in the laboratory according to the Unified Soil Classification System. The results are presented in "Log of Test Borings" in Appendix B.

Moisture-Density

The natural moisture contents and dry unit weights were determined for selected undisturbed samples of the soils in general accordance with CT 226. This information was used to classify and correlate the soils. The results are presented in the summary table on Plates C-2A and C-2B.

Atterberg Limits

Atterberg Limits (CT 204) were determined on selected samples of the fine-grained materials. These results were used to classify the soils, as well as to obtain an indication of the effective strength characteristics and expansion potential. The tests results are presented on Plate C-3, "Plasticity Chart".

Grain Size Classification

Grain size classification tests (CT 202) were performed on selected samples of granular soil to aid in the classification. The results are presented on Plate C-4, "Grain Size Distribution Curves".

Unconfined Compression Tests

Strength tests were performed on selected undisturbed samples in general accordance with CT 221. The results are presented on Plates C-5A through C-5J.

Consolidation Test

One dimension consolidation test (CT 219) was performed on selected sample of clayey soil to aid in estimating settlement under approach fill. The results are presented on Plate C-6.

Corrosion Tests

Corrosion tests were performed on selected samples to determine the corrosion potential of the soils, according to CT 643, 417 and 422. The tests were performed by Sunland Analytical. The test results are presented on Plates C-7A through C-7D.

R-value Test

R-value test was performed on representative bulk sample for pavement design. The test was performed according to CT 301. The test results are presented on Plates C-8A, C-8B, and C-8C.

MATHILDA AVENUE IMPROVEMENTS AT SR 237 AND US 101 SUNNYVALE, CALIFORNIA

JOB NO.: 2014-129-PSE PLATE NO.: C-1

Borehole	Sample Number	Depth	Classi- fication	Water Content	Dry Density	Liquid Limit	Plastic Limit	Plasticity Index	% > Sieve 4	% < Sieve 200	Shear Strength (tsf)
R-17-003	1	5.0	CL	18.0	115.2	39	17	22			
R-17-003	2	10.0	CL	18.9	-						
R-17-003	3	15.0	SM	20.1	-				1.8	46.1	
R-17-003	4	20.0	CL	26.4	99.6						
R-17-003	5	25.0	CL	26.3	98.3						UC = 0.25
R-17-003	6	30.0	CL	25.7	-						
R-17-006	1	3.0	CL	19.8	101.9	32	19	13			
R-17-006	2	6.0	CL	15.8	110.0						
R-17-006	3	11.0	CL	23.2	102.8						
R-17-006	4	16.0	CL	32.6	91.6						
R-17-006	5	21.0	CL	19.5	107.5						UC = 0.35
R-17-006	6	26.0	CL	16.8	116.1						
R-17-006	7	31.0	CL	23.5	105.3						
R-17-009	1	3.0	СН	15.1	109.9	54	21	33			
R-17-009	2	6.0	CL	18.9	105.8						
R-17-009	3	11.0	CL	23.6	-						
R-17-009	4	16.0	CL	25.9	96.9						UC = 0.3
R-17-009	5	21.0	CL	28.9	93.8						
R-17-009	6	26.0	CL	34.8	90.4						UC = 0.3
R-17-009	7	31.0	CL	30.1	93.7						
R-17-009	8	36.0	SM	8.7	-						
R-17-009	9	41.0	CL	26.8	96.7						
R-17-010	1	6.0	СН	24.5	102.0						
R-17-010	2	11.0	CL	18.6	-						
R-17-010	3	16.0	CL	20.9	-						
R-17-010	4	21.0	CL	21.7	106.2						UC = 0.5
R-17-010	5	26.0	CL	28.2	92.2						
R-17-010	6	31.0	CL	28.9	94.8						
R-17-010	7	36.0	CL	20.7	112.5						
R-17-010	8	41.0	CL	24.1	91.2						
R-17-011	1	3.0	CL	17.6	107.1						
R-17-011	2	6.0	CH	28.8	94.7						
R-17-011	3	11.0	CL	29.7	92.9						UC = 0.3
R-17-011	4	16.0	CL	30.4	90.9						
R-17-011	5	21.0	SM	23.1	104.5						
R-17-011	6	26.0	CL	21.7	106.4						UC = 0.25
R-17-011	7	31.0	CL	26.6	99.1						
R-17-011	8	36.0	CL	31.2	94.1						
R-17-013	1	3.0	CH	30.8	83.3						
R-17-013	2	6.0	CH	26.1	96.6						
R-17-013	3	11.0	CL	22.3	102.9						UC = 0.2
R-17-013	4	16.0	CL	28.5	94.0						
R-17-013	5	21.0	CL	20.0	106.1						UC = 0.45
. –	P/A Practici	A R	IKH		MA		VENUE IM SUNN	IPROVEM NYVALE, (ENTS AT SP	R 237 AND L	JS 101
Practicing in the Geosciences JOB NO: 2014-129-PSE PLATE NO: C-2A											

Borehole	Sample Number	Depth	Classi- fication	Water Content	Dry Density	Liquid Limit	Plastic Limit	Plasticity Index	% > Sieve 4	% < Sieve 200	Shear Strength (tsf)
R-17-013	6	26.0	CL	19.3	-						
R-17-013	7	31.0	CL	24.1	103.0						
R-17-013	8	36.0	CL	21.6	103.1						
R-17-013	9	41.0	CL	20.8	103.0						
R-17-014	1	5.0	СН	30.1	98.8						
R-17-014	2	10.0	CL	20.6	98.7						
R-17-014	3	15.0	SM	24.2	99.6				0.0	47.4	
R-17-014	4	20.0	SM	30.0	103.9						
R-17-014	5	25.0	CL	26.4	97.7	44	18	26			UC = 0.7
R-17-014	6	30.0	CL	21.6	-						
R-17-014	7	35.0	SP	11.1	144.0						
R-17-015	1	5.0	CL	70.2	113.1						
R-17-015	2	10.0	CL	21.1	-						
R-17-015	3	15.0	SM	17.8	114.8						
R-17-015	4	20.0	SC	29.3	-				1.7	31.0	
R-17-015	5	25.0	CL	24.5	-						

MATHILDA AVENUE IMPROVEMENTS AT SR 237 AND US 101 SUNNYVALE, CALIFORNIA

JOB NO: 2014-129-PSE

PLATE NO: C-2B

PLASTICITY CHART

Boring Number	Sample Number	Depth (feet)	Test Symbol	Moisture Content (%)	LL	PL	PI	Description
R-17-003		5.0	•		39	17	22	Lean CLAY
R-17-006		3.0			32	19	13	Lean CLAY
R-17-009		3.0			54	21	33	Fat CLAY
R-17-014		25.0	*		44	18	26	Lean CLAY

JOB NO: 2014-129-PSE

MATHILDA AVENUE IMPROVEMENTS AT SR 237 AND US 101

PLATE NO:

SUNNYVALE, CALIFORNIA

C-3

11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 04/19/2017 Date Submitted 04/14/2017

To: Nasir Ahmad Parikh Consultants, Inc. 2360 Qume Dr. Suite A San Jose, CA 95131

From: Gene Oliphant, Ph.D. \ Randy Horney

The reported analysis was requested for the following location: Location : 2014-129-065 Site ID : R-17-0062@6FT Thank you for your business.

* For future reference to this analysis please use SUN # 74009-154368. EVALUATION FOR SOIL CORROSION

 Soil pH
 7.80

 Minimum Resistivity
 1.98 ohm-cm (x1000)

 Chloride
 135.6 ppm
 00.01356 %

 Sulfate
 80.5 ppm
 00.00805 %

METHODS

11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

Date Reported 04/19/2017 Date Submitted 04/14/2017

To: Nasir Ahmad Parikh Consultants, Inc. 2360 Qume Dr. Suite A San Jose, CA 95131

From: Gene Oliphant, Ph.D. \ Randy Horney

The reported analysis was requested for the following location: Location : 2014-129-065 Site ID : R-17-0093@11FT Thank you for your business.

* For future reference to this analysis please use SUN # 74009-154367.

EVALUATION FOR SOIL CORROSION

Soil pH 7	.69		
Minimum Resistivit	y 1.26 ohm-cm	(x1000)	
Chloride	9.8 ppm	00.00098	07
Sulfate	45.5 ppm	00.00455	0

METHODS

11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

Date Reported 04/19/2017 Date Submitted 04/14/2017

To: Nasir Ahmad Parikh Consultants, Inc. 2360 Qume Dr. Suite A San Jose, CA 95131

From: Gene Oliphant, Ph.D. \ Randy Horney

The reported analysis was requested for the following location: Location : 2014-129-065 Site ID : R-17-0131@3FT Thank you for your business.

* For future reference to this analysis please use SUN # 74009-154369.

EVALUATION FOR SOIL CORROSION

Soil pH	7.33				
Minimum Re	esistivity 0	.86	ohm-cm	(x1000)	
Chloride	3.	3 pp	m	00.00033	90
Sulfate	10.	1 pp	m	00.00101	0,0

METHODS

11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 04/19/2017 Date Submitted 04/14/2017

To: Nasir Ahmad Parikh Consultants, Inc. 2360 Qume Dr. Suite A San Jose, CA 95131

From: Gene Oliphant, Ph.D. \ Randy Horney

The reported analysis was requested for the following location: Location : 2014-129-065 Site ID : R-17-0142@10FT Thank you for your business.

* For future reference to this analysis please use SUN # 74010-154370.

EVALUATION FOR SOIL CORROSION

Soil pH	7.59			
Minimum Resistivi	.ty 1.50	ohm-cm	(x1000)	
Chloride	11.4 p	pm	00.00114	00
Sulfate	52.3 p	pm	00.00523	olo

METHODS

APPENDIX D

NB US 101 OFF-RAMP STATIC CONDITION (Boring R-17-003)

Distance

SB US 101 OFF-RAMP STATIC CONDITION (Boring R-17-011)

Distance

SB US 101 OFF-RAMP

Distance (ft)

LIQUEFACTION	POTENTIAL	ANALYSIS
LIQUEI AUTION	I OTENTIAE	ANALIOIO

PROJECT NAMEMathilda Avenue ImprovementsSOIL GROUPROJECT NO.2014-129-PSE1. GRAVBORING NO.R-17-0032. CLAYS													AND TC SI	NONPI LTS	LASTI	C SILT	ſS			FAULT a _{max}	INFO (g)=	0.58	
BOREH GW DE	OLE E PTH (f	DIA (in) t)=	5 9						HAMME	R EN	IERGY	' =	75%							MSF	. 1 M _w =	6.6 1.39	
															S –(CRR								
Sample	Depth	Soil	Blow	Sampi	<u>510LIC</u>	<u>ດ.'</u>	IVA IIC	<u>, 100 N</u>		_		0217	0110							0(0///	7.57001() 1		
No	(ft)	Туре	Count	Туре	(psf)	(psf)	γ _d	CSR	SPT-N _{eq.}	CE	C _R	Cs	C _B	N ₆₀	C _N	(N ₁) ₆₀) F.C.	(N ₁) _{60, CS}	₃ CRR _{7.5}	Κσ	Κα	F.S.	Volumetric Strain (%)
1	5	2	19	MC	625	625	0.99		12.4	1.3	0.75	1.0	1.0	11.6	1.45	16.8				1.00	1		
2	10	2	5	MC	1250	1156	0.98		3.3	1.3	0.80	1.0	1.0	3.3	1.24	4.0				1.00	1		
3	15	1	10	MC	1875	1469	0.97	0.47	6.5	1.3	0.85	1.0	1.0	6.9	1.14	7.9	46%	14.4	0.15	1.00	1	0.46	2
4	20	2	9	MC	2500	1781	0.96		5.9	1.3	0.95	1.0	1.0	6.9	1.05	7.3				1.00	1		
5	25	2	11	MC	3125	2094	0.94		7.2	1.3	0.95	1.0	1.0	8.5	0.98	8.3				0.99	1		
6	30	2	14	SPT	3750	2406	0.92		14.0	1.3	1.00	1.2	1.0	21.0	0.92	19.2				0.94	1		
																			Total Lie	quefactio	n Settlem	ent (in.)=	1.2
1. The c 2. For c 3. The ir where for F for 5 for F Referen	forrection orrection onfluence α and $C \le 5^{\circ}$ % < F $C \ge 3^{\circ}$ ce: LionYou	fon fact on of o ce of Fi d β = c % C < 35 5% quefac oud, et	tors C _E verburd nes Con oefficier α % α α tion Res al., ASC	(Energy en, $C_N =$ ntents a nts deten = 0, $x = \exp(x^2)$ = 5.0, sistance CE Jourr	Ratio), C = 2.2/(1.2 re expres rmined fro 1.76-(190 of Soils: nal of Geo	C_B (Bore $+ \sigma_v'/P_i$ ssed by om the f h/FC^2)), Summa otechnic	hole D a) with the fol collowin $\beta = (0$ $\beta = 1$ ary Rep cal and	iamete a max lowing ng rela 1.0 0.99+(I l.2 port fro I Geoe	er), C _R (Ro imum valu correction tionships =C ^{1.5} /1000 om the 199 nvironmer	ed Ler le of : (N ₁))))))))))))))))))))	ngth) a 1.7 per) _{60cs} = :EER a nginee	nd C_{s} Kaye $\alpha + \beta$ and 1s ring, β	_S (Sar en et a (N ₁) ₆₀ 998 N Octob	npling I al. (199) CEER er 200	Methoo 2) as o Works 1, Vol.	d-liner) cited ir hops (127 N) are p n Youd on Ev lo. 10	ber Youd d et al. (2 aluation o	et al. (2 2001). of Liquel	001). faction R	esistance	of Soils,	

PROJE		ME	Mati	hilda Av 4-129-P	∟ <u>тъю</u> /enue Im SE	nproven	nents		SOIL GF	ROUF	PS IS SA	NDS		NONPI	ASTI			FAULT	INFO		
BORING	G NO.	-	R-17	7-006	-				2. CL/	2. CLAYS AND PLASTIC SILTS									(g)=	0.58	
			_																$TM_w =$	6.6	
BOREH GW DE	OLE L PTH (f	0IA (in) it)=		HAMME	$\mathbf{H}_{\mathbf{N}}(\mathbf{N}) = 1 0 0$								MSF	=	1.39						
					CYCLIC	STRESS	RATIC) (CSR			LIG	UEFA	CTIO	N RESI	STAN	CE (CRR _{7.5})		S.=(CRR	2 _{7.5} /CSR)*N	//SF*Kσ*K	
Sample No	Depth (ft)	Soil Type	Blow Count	Type	σ _v (psf)	σ _v ' (psf)	γ _d	CSR	SPT-N _{eq.}	C_E	C_{R}	C_{S}	C_{B}	N ₆₀	C_N	(N ₁) ₆₀ F.C.	$(N_1)_{60, CS} CRR_{7.9}$	₅ Kσ	Κα	F.S.	Volumetric Strain (%)
1	2	2	32	MC	250	250	1.00		20.8	1.2	0.75	1.0	1.0	18.2	1.66	30.2		1.00	1		
2	5	2	28	MC	625	625	0.99		18.2	1.2	0.75	1.0	1.0	15.9	1.45	23.2		1.00	1		
3	10	2	25	MC	1250	1250	0.98		16.3	1.2	0.80	1.0	1.0	15.2	1.21	18.3		1.00	1		
4	15	2	20	MC	1875	1563	0.97		13.0	1.2	0.85	1.0	1.0	12.9	1.11	14.3		1.00	1		
5	20	2	10	MC	2500	1875	0.96		6.5	1.2	0.95	1.0	1.0	7.2	1.03	7.4		1.00	1		
6	25	2	33	MC	3125	2188	0.94		21.5	1.2	0.95	1.0	1.0	23.8	0.96	22.8		0.97	1		
7	30	2	14	MC	3750	2500	0.92		9.1	1.2	1.00	1.0	1.0	10.6	0.90	9.5		0.94	1		

Total Liquefaction Settlement (in.)= 0.0

1. The correction factors C_E (Energy Ratio), C_B (Borehole Diameter), C_R (Rod Length) and C_S (Sampling Method-liner) are per Youd et al. (2001).

2. For correction of overburden, $C_N = 2.2/(1.2 + \sigma_v'/P_a)$ with a maximum value of 1.7 per Kayen et al. (1992) as cited in Youd et al. (2001).

3. The influence of Fines Contents are expressed by the following correction: $(N_1)_{60cs} = \alpha + \beta (N_1)_{60}$

where α and β = coefficients determined from the following relationships

for FC <u><</u> 5%	$\alpha = 0,$	$\beta = 1.0$
for 5% < FC < 35%	$\alpha = \exp(1.76 - (190/FC^2)),$	$\beta = (0.99+(FC^{1.5}/1000))$
for FC <u>></u> 35%	$\alpha = 5.0,$	β = 1.2

Reference: Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER Workshops on Evaluation of Liquefaction Resistance of Soils, Youd, et al., ASCE Journal of Geotechnical and Geoenvironmental Engineering, October 2001, Vol. 127 No. 10
PROJE PROJE BORINI	CT NA CT NC G NO.	ME).	Mati 2014 R-17	nilda Av 1-129-P 7-009	renue Im SE	provem	ients		SOIL GF 1. GR 2. CL/	ROUF AVEL AYS /	'S _S, SA AND P	NDS LAST	AND IC SI	NONPI LTS	LASTI	C SILTS			FAULT	INFO (g)=	0.58	
30REH GW DE	IOLE E PTH (f	DIA (in) t)=	5 11						HAMME	R EN	IERGY	′=	70%						FAUL MSF	.T M _w =	6.6 1.39	
					CYCLIC S	STRESS	RATIC) (CSR			LIQ	UEFA	стю	N RESI	STAN	CE (CRR _{7.5})			S.=(CRR	_{7.5} /CSR)*I	MSF*Kσ*K	
Sample No	Depth (ft)	Soil Type	Blow Count	Sampi Type	σ _v (psf)	σ _v ' (psf)	γ_{d}	CSR	SPT-N _{eq.}	C_E	C_R	C_{S}	C _B	N ₆₀	C_N	(N ₁) ₆₀ F.C.	(N ₁) _{60, 0}	_{CS} CRR _{7.5}	Κσ	Κα	F.S.	Volumetric Strain (%)
1	2	2	38	MC	250	250	1.00		24.7	1.2	0.75	1.0	1.0	21.6	1.66	35.9			1.00	1		
2	5	2	28	MC	625	625	0.99		18.2	1.2	0.75	1.0	1.0	15.9	1.45	23.2			1.00	1		
3	10	2	11	SPT	1250	1250	0.98		11.0	1.2	0.80	1.2	1.0	12.3	1.21	14.9			1.00	1		
4	15	2	13	MC	1875	1625	0.97		8.5	1.2	0.85	1.0	1.0	8.4	1.09	9.2			1.00	1		
5	20	2	9	MC	2500	1938	0.96		5.9	1.2	0.95	1.0	1.0	6.5	1.01	6.6			1.00	1		
6	25	2	8	MC	3125	2250	0.94		5.2	1.2	0.95	1.0	1.0	5.8	0.95	5.5			0.97	1		
7	30	2	11	MC	3750	2563	0.92		7.2	1.2	1.00	1.0	1.0	8.3	0.89	7.4			0.94	1		
8	35	1	37	MC	4375	2875	0.89	0.51	24.1	1.2	1.00	1.0	1.0	28.1	0.83	23.4 15%	27.0	0.34	0.87	1	0.80	
9	40	2	11	MC	5000	3188	0.85		7.2	1.2	1.00	1.0	1.0	8.3	0.79	6.6			0.89	1		
																		Total Lic	juefactio	n Settlem	nent (in.)=	0.0
I. The c 2. For c 3. The ii where for f for f	correction orrection ofluence α and $C \leq 5^{\circ}$ $C \leq 5^{\circ}$ $C \leq 3^{\circ}$	on fac on of o ce of Fi d β = c % C < 35	tors C _E verburd nes Cor oefficier α % α	(Energy en, $C_N =$ ntents a nts deter z = 0, $a = \exp(1)$	Ratio), C = 2.2/(1.2 re expres rmined fr 1.76-(190	2 _B (Bore 1 + σ _v '/Ρ, ssed by om the f D/FC ²)),	hole D a) with the foll ollowir $\beta = 1$ $\beta = (($	iamete a max lowing ng relat 1.0 0.99+(f	r), C _R (Ro imum valu correction tionships -C ^{1.5} /1000	od Ler ie of ' i: (N ₁)	וgth) a 1.7 per) _{60cs} = נ	nd C _s · Kaye α + β	_S (Sar en et ⊧ (N₁) ₆	npling I al. (199 o	Methoo 2) as o	d-liner) are cited in You	per You d et al. (d et al. (2 (2001).	001).			

Youd, et al., ASCE Journal of Geotechnical and Geoenvironmental Engineering, October 2001, Vol. 127 No. 10

LIQUE	ACTI	ON PO	TENTIA		YSIS																	
PROJE PROJE	CT NA	AME	Mati 2014	hilda Av 1-129-P	venue Im SE	proven	nents		SOIL GF		PS IS SA	NDS		NONPI	ASTI	C SILTS			FAULT	INFO		
BORIN	G NO.		R-17	7-010	-				2. CL/	AYS	AND F	LAST	IC SI	LTS	_/.011	S GIETO			a _{max} FAUL	(g)= .T M _ =	0.58 6.6	
BOREF GW DE	IOLE I PTH (DIA (in) ft)=	5 12						HAMME	R EN	IERG	′=	70%						MSF	=	1.39	
					CYCLIC	STRESS	RATIC) (CSR			LIG	UEFA		N RESI	STANC	CE (CRR _{7.5})			S.=(CRR	7.5 /CSR) *I	MSF*Kσ*K	
Sample No	Depth (ft)	n Soil Type	Blow Count	Sampi Type	σ _v (psf)	σ _v ' (psf)	$\gamma_{\rm d}$	CSR	SPT-N _{eq.}	C _E	C_R	C_{S}	C_{B}	N ₆₀	C_N	(N ₁) ₆₀ F.C.	(N ₁) _{60, CS}	CRR _{7.5}	Κσ	Κα	F.S.	Volumetric Strain (%)
1	2	1	20	MC	250	250	1.00	0.38	13.0	1.2	0.75	1.0	1.0	11.4	1.66	18.9	18.9	0.20	1.00	1		
2	5	2	20	MC	625	625	0.99		13.0	1.2	0.75	1.0	1.0	11.4	1.45	16.5			1.00	1		
3	10	2	17	SPT	1250	1250	0.98		17.0	1.2	0.80	1.2	1.0	19.0	1.21	23.0			1.00	1		
4	15	2	10	MC	1875	1688	0.97		6.5	1.2	0.85	1.0	1.0	6.4	1.08	6.9			1.00	1		
5	20	2	13	MC	2500	2000	0.96		8.5	1.2	0.95	1.0	1.0	9.4	1.00	9.4			1.00	1		
6	25	2	13	MC	3125	2313	0.94		8.5	1.2	0.95	1.0	1.0	9.4	0.93	8.7			0.96	1		
7	30	2	11	MC	3750	2625	0.92		7.2	1.2	1.00	1.0	1.0	8.3	0.88	7.3			0.93	1		
8	35	2	22	MC	4375	2938	0.89		14.3	1.2	1.00	1.0	1.0	16.7	0.82	13.8			0.88	1		
9	40	2	19	MC	5000	3250	0.85		12.4	1.2	1.00	1.0	1.0	14.4	0.78	11.2			0.86	1		
																		Total Lic	quefactio	n Settlem	ent (in.)=	0.0

1. The correction factors C_E (Energy Ratio), C_B (Borehole Diameter), C_R (Rod Length) and C_S (Sampling Method-liner) are per Youd et al. (2001).

2. For correction of overburden, $C_N = 2.2/(1.2 + \sigma_v'/P_a)$ with a maximum value of 1.7 per Kayen et al. (1992) as cited in Youd et al. (2001).

3. The influence of Fines Contents are expressed by the following correction: $(N_1)_{60cs} = \alpha + \beta (N_1)_{60}$

where α and β = coefficients determined from the following relationships

for FC <u><</u> 5%	$\alpha = 0,$	$\beta = 1.0$
for 5% < FC < 35%	$\alpha = \exp(1.76 \cdot (190/FC^2)),$	$\beta = (0.99+(FC^{1.5}/1000))$
for FC <u>></u> 35%	$\alpha = 5.0,$	β = 1.2

LIQUE	ACTI	ON PO	TENTIA		YSIS																
PROJE PROJE	CT NA	AME D.	Mati 2014	hilda Av I-129-PS	enue Im SE	nproven	nents		SOIL GF 1. GR	ROUF AVEI	PS LS. SA	NDS	AND	NONP	LASTI	C SILTS		FAULT	NFO		
BORIN	G NO.		R-17	'-011					2. CL/	AYS /	AND F	PLAST	IC SI	TS	-			a _{max} FAUL	(g)= .T M _w =	0.58 6.6	
BOREH GW DE	IOLE I PTH (DIA (in) ˈft)=	5 13						HAMME	R EN	IERG	/=	70%					MSF	=	1.39	
					CYCLIC	STRESS	RATIC) (CSR			LIG	UEFA	CTIO	N RESI	STANC	CE (CRR _{7.5})		S.=(CRR	_{7.5} /CSR)*l	MSF*Kσ*K	
Sample No	Depth (ft)	n Soil Type	Blow Count	Type	σ _v (psf)	σ _v ' (psf)	γ_{d}	CSR	SPT-N _{eq.}	C_{E}	C_{R}	Cs	C_{B}	N ₆₀	C_N	(N ₁) ₆₀ F.C. (N ₁) _{60, CS} CRR _{7.5}	Κσ	Κα	F.S.	Volumetric Strain (%)
1	2	2	10	MC	250	250	1.00		6.5	1.2	0.75	1.0	1.0	5.7	1.66	9.4		1.00	1		
2	5	2	13	MC	625	625	0.99		8.5	1.2	0.75	1.0	1.0	7.4	1.45	10.8		1.00	1		
3	10	2	11	SPT	1250	1250	0.98		11.0	1.2	0.80	1.2	1.0	12.3	1.21	14.9		1.00	1		
4	15	2	10	MC	1875	1750	0.97		6.5	1.2	0.85	1.0	1.0	6.4	1.06	6.8		1.00	1		
5	20	2	14	MC	2500	2063	0.96		9.1	1.2	0.95	1.0	1.0	10.1	0.99	9.9		0.99	1		
6	25	2	8	MC	3125	2375	0.94		5.2	1.2	0.95	1.0	1.0	5.8	0.92	5.3		0.96	1		
7	30	2	26	MC	3750	2688	0.92		16.9	1.2	1.00	1.0	1.0	19.7	0.86	17.1		0.90	1		
8	35	2	11	MC	4375	3000	0.89		7.2	1.2	1.00	1.0	1.0	8.3	0.81	6.8		0.90	1		
																	Total Lie	quefactio	n Settlem	ent (in.)=	0.0

1. The correction factors C_E (Energy Ratio), C_B (Borehole Diameter), C_R (Rod Length) and C_S (Sampling Method-liner) are per Youd et al. (2001).

2. For correction of overburden, $C_N = 2.2/(1.2 + \sigma_v'/P_a)$ with a maximum value of 1.7 per Kayen et al. (1992) as cited in Youd et al. (2001).

3. The influence of Fines Contents are expressed by the following correction: $(N_1)_{60cs} = \alpha + \beta (N_1)_{60}$

where α and β = coefficients determined from the following relationships

for FC <u><</u> 5%	$\alpha = 0,$	$\beta = 1.0$
for 5% < FC < 35%	$\alpha = \exp(1.76 - (190/FC^2)),$	$\beta = (0.99+(FC^{1.5}/1000))$
for FC <u>></u> 35%	$\alpha = 5.0,$	β = 1.2

LIQUE	FACTIO	ON PO	TENTIA		LYSIS																			
PROJ PROJ	ECT NA	ME	Mat 201	hilda Av 4-129-P	venue In SF	nproven	nents		SOIL GF		PS IS SA	NDS				C SII T	s				FAULT	INFO		
BORII	NG NO.		R-1	7-013	02				2. CL/	AYS	AND P	LAST	FIC SI	LTS	L/ (O I I	O OILI	U				a _{max} FAUL	(g)= _T M _ =	0.58 6.6	
BORE GW D	HOLE E EPTH (1	DIA (in) t)=	5 12						HAMME	R EN	IERGY	/=	75%								MSF	=	1.39	
					CYCLIC	STRESS	RATIO) (CSR			LIG	UEFA	ACTIO	N RES	ISTANO	CE (CR	R _{7.5})			S	S.=(CRR	2 _{7.5} /CSR)	*MSF*Kσ*K	
Samp No	e Depth (ft)	Soil Type	Blow Count	Sampi Type	σ _v (psf)	σ _v ' (psf)	γ_{d}	CSR	SPT-N _{eq.}	C_E	C_R	C_{S}	C_{B}	N ₆₀	C_N	(N ₁) ₆₀	F.C.	(N ₁) ₆	_{0, CS} C	RR _{7.5}	Κσ	Κα	F.S.	Volumetric Strain (%)
1	2	2	14	MC	250	250	1.00		9.1	1.3	0.75	1.0	1.0	8.5	1.66	14.2					1.00	1		
2	5	2	16	MC	625	625	0.99		10.4	1.3	0.75	1.0	1.0	9.8	1.45	14.2					1.00	1		
3	10	2	9	MC	1250	1250	0.98		5.9	1.3	0.80	1.0	1.0	5.9	1.21	7.1					1.00	1		
4	15	2	12	MC	1875	1688	0.97		7.8	1.3	0.85	1.0	1.0	8.3	1.08	8.9					1.00	1		
5	20	2	13	MC	2500	2000	0.96		8.5	1.3	0.95	1.0	1.0	10.0	1.00	10.0					1.00	1		
6	25	1	7	SPT	3125	2313	0.94	0.48	7.0	1.3	0.95	1.2	1.0	10.0	0.93	9.3	15%	12	.3	0.13	0.96	1	0.37	2.2
7	30	2	12	MC	3750	2625	0.92		7.8	1.3	1.00	1.0	1.0	9.8	0.88	8.5					0.93	1		
8	35	2	17	MC	4375	2938	0.89		11.1	1.3	1.00	1.0	1.0	13.8	0.82	11.4					0.89	1		
9	40	2	23	MC	5000	3250	0.85		15.0	1.3	1.00	1.0	1.0	18.7	0.78	14.6					0.86	1		
																			Тс	otal Liq	uefactio	on Settler	ment (in.)=	0.8

1. The correction factors C_E (Energy Ratio), C_B (Borehole Diameter), C_R (Rod Length) and C_S (Sampling Method-liner) are per Youd et al. (2001).

2. For correction of overburden, $C_N = 2.2/(1.2 + \sigma_v'/P_a)$ with a maximum value of 1.7 per Kayen et al. (1992) as cited in Youd et al. (2001).

3. The influence of Fines Contents are expressed by the following correction: $(N_1)_{60cs} = \alpha + \beta (N_1)_{60}$

where α and β = coefficients determined from the following relationships

for FC <u><</u> 5%	$\alpha = 0,$	$\beta = 1.0$
for 5% < FC < 35%	$\alpha = \exp(1.76 \cdot (190/FC^2)),$	$\beta = (0.99+(FC^{1.5}/1000))$
for FC <u>></u> 35%	$\alpha = 5.0,$	β = 1.2

LIQUEF	ACTIO	ON PO	TENTIA	AL ANA	LYSIS																
PROJE	CT NA	ME	Mat 2014	hilda Av 4-129-P	venue Im SF	proven	nents		SOIL GF		S S S S S A	NDS						FAULT	INFO		
BORING	G NO.	·.	R-17	7-014	0L				2. CL/	AYS /	AND P	LAST	TIC SI	LTS		GOLIO		a _{max} FAU	(g)= T M =	0.58 6.6	
BOREH GW DE	IOLE E PTH (f	DIA (in) it)=	5 9						HAMME	R EN	IERGY	/=	75%					MSF		1.39	
				Samo	CYCLIC	STRESS	RATIC) (CSR			LIG	UEFA		N RESI	STAN	CE (CRR _{7.5})		S.=(CRF	R _{7.5} /CSR)*I	∕ISF*Kσ*K	
Sample No	Depth (ft)	Soil Type	Blow Count	Type	σ _v (psf)	σ _v ' (psf)	γ_{d}	CSR	SPT-N _{eq.}	C_E	C_{R}	C_{S}	C_{B}	N ₆₀	C_N	(N ₁) ₆₀ F.C.	(N ₁) _{60, CS} CRR _{7.5}	Κσ	Κα	F.S.	Volumetrio Strain (%)
1	5	2	19	MC	625	625	0.99		12.4	1.3	0.75	1.0	1.0	11.6	1.45	16.8		1.00	1		
2	10	2	14	MC	1250	1188	0.98		9.1	1.3	0.80	1.0	1.0	9.1	1.23	11.2		1.00	1		
3	15	1	31	MC	1875	1500	0.97	0.46	20.2	1.3	0.85	1.0	1.0	21.4	1.13	24.2 47%	34.0	1.00	1		
4	20	2	7	MC	2500	1813	0.96		4.6	1.3	0.95	1.0	1.0	5.4	1.04	5.6		1.00	1		
5	25	2	9	MC	3125	2125	0.94		5.9	1.3	0.95	1.0	1.0	6.9	0.97	6.8		0.99	1		
6	30	2	10	SPT	3750	2438	0.92		10.0	1.3	1.00	1.2	1.0	15.0	0.91	13.6		0.94	1		
7	35	2	69	MC	4375	2750	0.89		44.9	1.3	1.00	1.0	1.0	56.1	0.85	47.9		0.88	1		

Total Liquefaction Settlement (in.)= 0.0

1. The correction factors C_E (Energy Ratio), C_B (Borehole Diameter), C_R (Rod Length) and C_S (Sampling Method-liner) are per Youd et al. (2001).

2. For correction of overburden, $C_N = 2.2/(1.2 + \sigma_v'/P_a)$ with a maximum value of 1.7 per Kayen et al. (1992) as cited in Youd et al. (2001).

3. The influence of Fines Contents are expressed by the following correction: $(N_1)_{60cs} = \alpha + \beta (N_1)_{60}$

where α and β = coefficients determined from the following relationships

for FC <u><</u> 5%	$\alpha = 0,$	$\beta = 1.0$
for 5% < FC < 35%	$\alpha = \exp(1.76 \cdot (190/FC^2)),$	$\beta = (0.99+(FC^{1.5}/1000))$
for FC <u>></u> 35%	$\alpha = 5.0,$	β = 1.2

LIQUEFACTION POTENTIAL ANALYSIS

PROJE PROJE BORINO	CT NA CT NC G NO.	ME).	Mati 2014 R-17	hilda Av 1-129-P 7-015	venue Im SE	provem	ients		SOIL GF 1. GR 2. CL	ROUF AVEL AYS /	PS _S, SA AND P	NDS LAST	AND IC SII	NONPI _TS	ASTI	C SILT	ſS			FAULT a _{max}	INFO (g)=	0.58	
BOREH GW DE	IOLE E	DIA (in)	5 9						HAMME	R EN	IERGY	' =	75%							MSE		1.39	
OW DE	(<i>.)</i> –	0																		-	1.00	
Comula	Denth	0	Diam	Sampi	CYCLIC S	STRESS	RATIC) (CSR			LIQ	UEFA	CTIO	V RESI	STANC	CE (CF	RR _{7.5})			S.=(CRR	2 _{7.5} /CSR)*I	MSF*Kσ*K	
Sample No	(ft)	Soli Туре	Count	Туре	σ _v (psf)	σ _v (psf)	γ_{d}	CSR	SPT-N _{eq.}	C_{E}	C_R	C_{S}	C _B	N ₆₀	C _N	(N ₁) ₆₀	₀ F.C.	(N ₁) _{60, C}	₅ CRR _{7.5}	Κσ	Κα	F.S.	Volumetric Strain (%)
1	2	2	25	MC	250	250	1.00		16.3	1.3	0.75	1.0	1.0	15.2	1.66	25.3				1.00	1		
2	5	2	23	MC	625	625	0.99		15.0	1.3	0.75	1.0	1.0	14.0	1.45	20.4				1.00	1		
3	10	1	11	MC	1250	1156	0.98	0.40	7.2	1.3	0.80	1.0	1.0	7.2	1.24	8.8	15%	11.8	0.13	1.00	1	0.45	2.4
4	15	1	4	MC	1875	1469	0.97	0.47	2.6	1.3	0.85	1.0	1.0	2.8	1.14	3.1	31%	8.4	0.10	1.00	1	0.30	2.9
5	20	2	4	SPT	2500	1781	0.96		4.0	1.3	0.95	1.2	1.0	5.7	1.05	6.0				1.00	1		
																			T 11 - 2		Quitta		
1. The c 2. For c 3. The in where for F for 5 for F Referen	correction fluence α and $C \le 5^{\circ}$ $(C \le 5^{\circ})$ $(C \le 5^{\circ})$ (C	ion fact on of ov ce of Fi d β = co % C < 35' 5% quefact pud, et a	ors C _E verburd nes Col coefficier α % α α tion Res al., ASC	(Energy en, $C_N =$ ntents a nts dete = 0, $z = \exp(2\pi - 2\pi -$	Ratio), C = 2.2/(1.2 re expres rmined fr 1.76-(190 of Soils: nal of Gei	C_{B} (Borel $c_{F} + \sigma_{v}'/P_{e}$ ssed by the form	hole D a) with the fol ollowin $\beta = 1$ $\beta = 1$ iny Rep cal and	iamete a max lowing ng rela 1.0 0.99+(F .2 Dort fro	er), C _R (Rc imum valu correction tionships FC ^{1.5} /1000 m the 199 nvironmer	nd Ler ne of n: (N ₁))) n6 NC ntal Er	ngth) a 1.7 pei) _{60cs} = :EER a nginee	nd C _s Kaye α + β and 1s ring, 1	S (San en et a (N₁)60 998 N	npling I al. (199 CEER ¹ er 200 ⁻	Methoo 2) as o Works 1, Vol.	d-liner cited ir hops 127 N) are p r You on Ev No. 10	ber Youd d et al. (2 aluation	l et al. (2 2001).	quetactic 001). faction R	esistance	of Soils,	3.2

PRC PRC BOF	DJECT N DJECT N RING NO	AME O.	Mathi 2014- R-17-0	lda Avenue 129-PSE 003	e Improve	ements									0.50//5			
Emb Unit	ankmen Weight (t H (ft)= (pcf)=	10 125	Col GV	ntact Pres V Level (ft)	sure (psf)= =	1250 8.5	C	Contact Are Contact Are Plain Str	ea, B (ft)= ea, L (ft)= ain? (Y/N)=		100 200 n	Cr/Cc= Ei	20.0% 75%	1. GR 1. GR 2. CL	AVELS AN AYS AND S	ND SANDS SILTS	
Soil Type	Dep	oth To	BLOW	SAMPLER	AVG SPT-N	γ _T (pcf)	γ'	ω	σ _v '	$\Delta \sigma_{\rm v}'$	Su (psf)	Pp (psf)	Cr/1+e ₀	Cc/1+e ₀	00	Settlem	ients (in) SAND	Sum
2	0	4	10	MC	8	125.0	125.0	18.0%	(p3i) 250	1213.4	975	3900	0.0240	0.1202	0.885	NO	OAND	0.885
2	4	8	19	MC	15	135.9	135.9	18.0%	772	1144.9	1853	7410	0.0240	0.1202	0.456			0.456
2	8	13	5	MC	4	125.0	62.6	19.0%	1200	1074.8	488	1950	0.0245	0.1227	0.310	0.493		0.803
1	13	18	10	MC	8	125.0	62.6	20.1%	1513	1004.4							0.320	
2	18	23	9	MC	7	125.8	63.4	26.4%	1828	940.9	878	3510	0.0282	0.1411	0.305			0.305
2	23	28	11	MC	9	124.2	61.8	26.3%	2141	883.4	1073	4290	0.0282	0.1409	0.254			0.254
												Es	stimated Settl	ement (in)=	2.32	0.49	0.32	3.1

PR(PR(BOI	DJECT N DJECT N RING NO	AME O.	Mathi 2014- R-17-0	lda Avenue 129-PSE 011	e Improve	ements									0.001/1			
Eml Unit	oankmen Weight (t H (ft)= pcf)=	10 125	Co. GV	ntact Pres V Level (ft)	sure (psf)= =	1250 13	C	Contact Are Contact Are Plain Stra	ea, B (ft)= ea, L (ft)= ain? (Y/N)=		100 200 n	Cr/Cc= Ei	20.0% 70%	1. GR 1. GR 2. CL	AVELS AN AYS AND	ND SANDS SILTS	
Soil Type	Dep	oth To	BLOW	SAMPLER	AVG SPT-N	γ _T	γ' (pcf)	ω	σ _v '	$\Delta \sigma_{\rm v}'$	Su (psf)	Pp (psf)	Cr/1+e ₀	Cc/1+e ₀	00	Settler	nents (in) SAND	Sum
2	0	4	10	MC	8	(pci) 126.0	126.0	17.6%	(psi) 252	1213.4	910	(psi) 3640	0.0238	0.1192	0.875	NC	SAND	0.875
2	4	8	13	MC	10	122.0	122.0	28.8%	748	1144.9	1183	4732	0.0294	0.1471	0.569			0.569
2	8	13	11	MC	8	120.5	120.5	29.7%	1293	1074.8	1001	4004	0.0299	0.1493	0.471			0.471
2	13	18	10	MC	8	118.5	56.1	30.4%	1735	1004.4	910	3640	0.0302	0.1510	0.359			0.359
2	18	23	14	MC	11	128.7	66.3	23.1%	2041	940.9	1274	5096	0.0266	0.1329	0.263			0.263
2	23	28	8	MC	6	129.4	67.0	21.7%	2374	883.4	728	2912	0.0259	0.1294	0.138	0.378		0.516
2	28	33	26	MC	20	125.4	63.0	26.6%	2699	831.1	2366	9464	0.0283	0.1416	0.198			0.198
2	33	37	11	MC	8	123.4	61.0	31.2%	2979	788.0	1001	4004	0.0306	0.1530	0.150			0.150

PRC PRC BOR	DJECT N DJECT N RING NC	IAME 10.).	Mathi 2014- R-17-0	lda Avenue 129-PSE 015	e Improve	ements									0000			
Emb Unit	ankmen Weight (t H (ft)= (pcf)=	10 125	Co. GV	ntact Press V Level (ft)	sure (psf)= =	1250 8.5	C	Contact Are Contact Are Plain Str	ea, B (ft)= ea, L (ft)= rain? (Y/N)=		100 200 n	Cr/Cc= Ei	20.0% 75%	1. GR 2. CL	AVELS AN AYS AND	ID SANDS SILTS	
Soil Type	De	pth To	BLOW	SAMPLER	AVG	γ _T	γ'	ω	σ _v '	$\Delta \sigma_{\rm v}'$	Su (psf)	Pp (psf)	Cr/1+e ₀	Cc/1+e ₀	00	Settler	ents (in)	Sum
2	0	3	10	MC	8	(pci) 125.0	125.0	20.0%	(psi) 188	1222.4	(psi) 975	3900	0.0250	0.1252	0.790	NC	SAND	0.790
2	3	8	25	MC	20	135.9	135.9	20.2%	715	1153.1	2438	9750	0.0251	0.1257	0.629			0.629
2	8	13	23	MC	19	125.0	62.6	21.1%	1211	1074.8	2243	8970	0.0256	0.1279	0.423			0.423
1	13	18	11	MC	9	135.3	72.9	17.8%	1550	1004.4							0.304	
1	18	23	4	MC	3	125.0	62.6	29.3%	1889	940.9							0.329	
												Es	timated Settl	ement (in)=	1.89	0.41	0.63	2.93

OH sign capacity

SUBJECT

PROJECT NO. 2014-129-PSE PROJECT NAME <u>Mathilda Avenue</u> CALCULATED BY <u>P. W.</u> DATE <u>7-11-17</u> CHECKED BY <u>DATE</u>

CHECKED BY	DATE
VERIFIED BY	DATE
BACK CHECKED BY	DATE

Stand	ard pla	n:	549	Po	st Tj	172	NYS	=14,	+	= 7/0	t .	
Pesig	n	Φ=	3',	L	= 16		CID	Η	P	ed L	- = 6	;'6
Boring	3	R - 1	7-003,	R-e	÷f.	FHw	A-HI	11-01	6, N	Nay Z	010	
		8 = 1	25 P=f,	γ'	= 67	r Pet						
Elev. 30'		CI DIT CUT-Off	El 24'		く	= 01	55	clay	ski'n	adhes	ion -	fa
	ilay	<u> </u>	N60=14 c=1400	rs+	Po	= 0.1	55 X (X 3.	1.4×1 ×3.1	+ 0,5 4	X5 +	0.7>	< 5
23 ¥ -	clay	5	$H_{60} = 4$ c = 500	P5+	· · · · · · · · · · · · · · · · · · ·	÷ 3	8 K	'ps				
18	sand	5	$(H_{1})_{60} = 9$ P = 28	v	ß	= 0,	.4	sand	skin	fricti	m co	.ef
13 +	clay	* 5'	$M_{60} = 7$ $C = 700$	PSt	Ţ	;'= 17 (from	25×7	+ 67	2 × 7.) face +	r = 1 o mid	340 San	d d
3	· · · · · · · · · · · · · · · · · · ·	Tip El	、 8 ′		Ps	= (0	.4×1.	34) X	5X3	X 3.14	H	-
	ilay				A	xial	capo	leity				
N 1	0				Pu	= 3	8 +	25 =	. 63	Kip	s >	5
	· >.				Ţc	rsion	n ca	pacity	12			
					M.	r = 6	53 X	3/2	÷9	4.5 1	<- f €	

Geotechnical • Environmental • Materials Testing • Construction Inspection Offices: San Jose • Oakland • Sacramento • Walnut Creek • Fresno • Los Angeles

SUBJECT OH Sign Capacity

PROJECT NO. 2014-129-PSE PROJECT NAME Mathilds Avenue CALCULATED BY _____ DATE _____ CHECKED BY _____ DATE _____ VERIFIED BY _____ DATE _____ BACK CHECKED BY _____ DATE _____

OH OS	4-1 sta. 0.82 Lt "MI" 70+00 (FSBT)
Standard	plan: 549, Post Type: NPS = 14, "+" = 3/4"
Prsign	q=3', L=16' CIPH Ped L=6'6"
Boring	R-17-006, Ref. FHWA-NHI-016, May 2010
	r=125 pct, y'= 62 pct
Elev	
20	$\chi = 0.55$ clay skin adhesion factor (ut-off EL 12)
12 -	$\frac{1}{1} \sum_{c=1500}^{N} \frac{P_{c}}{P_{s}} = 0.55 \times (1.5 \times 1 + 1.5 \times 10 + 0.7 \times 5)}{\times 3 \times 3.14}$
cla	y N60=15 = 103 kips > 5.9 kips / 10' c=1500 pst
2 7	Torsion Capacity
cla	$M_{T} = 103 \times 3/2 = 154 \text{ k-ft} > 46.4 \text{ k-ft}$
	Tip El3'
-11 1	
N. T. S.	

Geotechnical • Environmental • Materials Testing • Construction Inspection Offices: San Jose • Oakland • Sacramento • Walnut Creek • Fresno • Los Angeles

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Design Case: AC over AB

	Design TI= R _{BS} = R _{AB} =	12.5 10 78	input input				
	$GE_{AC*AB} = 0.0032 * TI*(100 - R_{BS}) =$		(100-R _{BS}) =	3.60			
	$GE_{AC} = 0.00$	32*TI*(10	0-R _{AB}) =	0.88			
	=>	GE'AC =		1.08	(add 0.2 ft safety factor)		
		AC Thic	kness =	0.63	ft		
	=> AC Thickness = G _{I, AC} = GE _{AC} =		kness =	0.65 1.72 1.11	ft (round up to the nearest 0.05 ft)		
	$GE_{AB} = GE_A$	C+48 - GE	AC =	2.49			
	- 12 - 1	AB thick	(ness=	2.26	ft		
	=>	AB Thic GE _{AB} =	kness=	2.30 2.53	ft (round up to the nearest 0.05 ft) $G_{f,AB}{=}1.1$		
Design S	ection:						
	AC				0.65 ft		
		A	B	Ī	2.30 ft		

PAVEMENT DESIGN PER HIGHWAY DESIGN MANUAL, CHAP. 600

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Design (

Case: AC over A	AB over	4 <u>S</u>		
Design TI= R _{BS} =	12.5 10	input input		
R _{AB} =	78			
R _{AS} =	50	check		
$GE_{TOTAL} = 0.$.0032*TI	$(100 - R_{BS}) =$	3.60	
$GE_{AC} = 0.00$	32*TI*(10	0-R AR) =	0.88	
=>	GE'AC=		1.08	(add 0.2 ft safety factor)
	AC thic	kness =	0.63	ft
=>	AC Thio G _{f, AC} =	kness=	0.65 1.72	ft (round up to the nearest 0.05 ft) $% \left(t^{2}\right) =0.00000000000000000000000000000000000$
	GE _{AC} =		1.11	
$GE_{AB+AC} = 0.$	0032*TI*	(100-R _{AS}) =	2.00	
=>	GE _{AC+A}	3=	2.20	(add 0.2 ft safety factor)
$GE_{AB} = GE_A$ =>	_{C+AB} -GE AB thic	AC = KNESS=	1.09 0.99	
=>	AB Thio GE _{AB} =	kness=	1.00 1.10	ft (round up to the nearest 0.05 ft) $G_{\rm f,AB}{=}1.1$
GE _{AS} = GE _T =>	_{OTAL} -GE AS Thic	_{IB} -GE _{AC} = :kness=	1.39 1.40	ft (round up to the nearest 0.05 ft)

Design Section:

AC	0.65	ft
AB	1.00	ft
AS	1.40	ft
Base Soil		

PAVEMENT DESIGN PER HIGHWAY DESIGN MANUAL, CHAP. 600

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Base Soil

Design Case: Full depth AC

Design TI= R _{BS} =	12.5 10	input input		
$GE_{AC} = 0.00$	32*TI*(10	0-R _{BS}) =	3.60	
=>	GE' _{AC} =		3.70	(add 0.1 ft safety factor)
=>	AC Thio	kness=	1.60	
=>	AC Thic	kness=	1.60	ft (round up to the nearest 0.05 ft)

Design Section:

AC 1.60 ft Base Soil

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Design Case: AC over AB

	Design TI= R _{BS} = R _{AB} =	12.5 15 78	input input				
	$GE_{AC*AB} = 0.$	0032*TI*((100-R _{BS}) =	3.40			
	$GE_{AC} = 0.00$	32*TI*(10	0-R _{AB}) =	0.88			
	=>	GE'		1.08	(add 0.2 ft safety factor)		
		AC Thic	kness =	0.63	ft		
	=>	AC Thic	kness =	0.65	ft (round up to the nearest 0.05 ft)		
		$G_{f, AC} =$		1.72			
		GE _{AC} =		1.11			
	$GE_{AB} = GE_A$	_{C+AB} - GE	AC =	2.29			
		AB thick	iness=	2.08	ft		
	=>	AB Thic	kness=	2.10	ft (round up to the nearest 0.05 ft)		
		GE _{AB} =		2.31	G _{f, AB} =1.1		
Design Se	ection:				_		
	AC			Ì	0.65 ft		
		A	В	Ī	2.10 ft		

PAVEMENT DESIGN PER HIGHWAY DESIGN MANUAL, CHAP. 600

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Desian	Case:	AC	over	AB	over	AS
Dooldu	0000.		,,		0.0	

Case: AC over A	AB over	<u>45</u>		
Design TI= R _{BS} = R _{AB} = R _{AS} =	12.5 15 78 50	input input check		
$GE_{TOTAL} = 0.$.0032*TI	$(100 - R_{BS}) =$	3.40	
GE _{AC} = 0.00 =>	32*TI*(10 GE' _{AC} = AC thic	(0-R _{AB}) =	0.88 1.08 0.63	(add 0.2 ft safety factor) ft
=>	AC Thio G _{f, AC} = GE _{AC} =	kness=	0.65 1.72 1.11	ft (round up to the nearest 0.05 ft)
$GE_{AB+AC} = 0.$	0032*TI*	(100-R _{AS}) =	2.00	
=>	GE _{AC+A}	3=	2.20	(add 0.2 ft safety factor)
GE _{AB} = GE _A =>	_{C+AB} -GE AB thic	_{AC} = kness=	1.09 0.99	
=>	AB Thio GE _{AB} =	kness=	1.00 1.10	ft (round up to the nearest 0.05 ft) $G_{f,AB}{=}1.1$
GE _{AS} = GE _T =>	OTAL -GE	_{AB} -GE _{AC} = kness=	1.19 1.20	ft (round up to the nearest 0.05 ft)

Design Section:

AC	0.65	ft
AB	1.00	ft
AS	1.20	ft
Base Soil		

PAVEMENT DESIGN PER HIGHWAY DESIGN MANUAL, CHAP. 600

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Base Soil

Design Case: Full depth AC

Design TI= R _{BS} =	12.5 input 15 input		
$GE_{AC} = 0.00$	32*TI*(100-R _{BS}) =	3.40	
=>	GE' _{AC} =	3.50	(add 0.1 ft safety factor)
=>	AC Thickness=	1.53	
=>	AC Thickness=	1.55	ft (round up to the nearest 0.05 ft

Design Section:

AC	1.55	ft
Base Soil	•	

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Design Case: AC over AB

	Design TI= R _{BS} = R _{AB} =	11.5 10 78	input input		
	$GE_{AC*AB} = 0.$	0032*TI*((100-R _{BS}) =	3.31	
	$GE_{AG} = 0.0032 * TI*(100-R_{AB}) =$			0.81	
	=>	GE' _{AC} =		1.01	(add 0.2 ft safety factor)
		AC Thic	kness =	0.58	ft
	=>	=> AC Thickness =		0.60 1.74	ft (round up to the nearest 0.05 ft)
		GE _{AC} =		1.04	
	CF CF	~		2.27	
	$GE_{AB} = GE_{AC+AB} - GE_{AC} =$ AB thickness=		2.27	4	
			2.00	ii.	
	=>	AB Thic	kness=	2.10	ft (round up to the nearest 0.05 ft)
		$GE_{AB}=$		2.31	G _{f, AB} =1.1
Design Se	ction:				
		A	С	Ì	0.60 ft
		A	в	Ì	2.10 ft

PAVEMENT DESIGN PER HIGHWAY DESIGN MANUAL, CHAP. 600

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Design (

Case: AC over	AB over A	<u>45</u>		
Design TI= R _{BS} = R _{AB} =	11.5 10 78	input input		
R _{AS} =	50	check		
$GE_{TOTAL} = 0.$.0032*TI*	(100-R _{BS}) =	3.31	
$GE_{AC} = 0.00$	32*TI*(10	0-R _{AB}) =	0.81	
=>	GE' _{AC} =		1.01	(add 0.2 ft safety factor)
	AC thick	(ness =	0.58	ft
=>	AC Thic G _{f, AC} = GE _{AC} =	kness=	0.60 1.74 1.04	ft (round up to the nearest 0.05 ft)
$GF_{AB,AC} = 0$	0032*TI*	(100-R as) =	1.84	
=>	GE _{AC+AE}	3=	2.04	(add 0.2 ft safety factor)
GE _{AB} = GE _A =>	_{C+AB} -GE	nc = (ness=	1.00 0.90	
=>	AB Thic GE _{AB} =	kness=	0.95 1.05	ft (round up to the nearest 0.05 ft) $G_{\rm f,AB}{=}1.1$
GE _{AS} = GE _T =>	OTAL -GE	_{IB} -GE _{AC} = kness=	1.22 1.25	ft (round up to the nearest 0.05 ft)

Design Section:

AC	0.60	ft
AB	0.95	ft
AS	1.25	ft
Base Soil		

PAVEMENT DESIGN PER HIGHWAY DESIGN MANUAL, CHAP. 600

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Base Soil

Design Case: Full depth AC

Design TI= R _{BS} =	11.5 input 10 input		
$GE_{AC} = 0.00$	32*TI*(100-R _{BS}) =	3.31	
=>	GE' _{AC} =	3.41	(add 0.1 ft safety factor)
=>	AC Thickness=	1.46	
=>	AC Thickness=	1.50	ft (round up to the nearest 0.05 ft)

Design Section:

AC 1.50 ft Base Soil

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Design Case: AC over AB

	Design TI= R _{BS} = R _{AB} =	11.5 input 15 input 78		
	$GE_{AC*AB} = 0.$.0032*TI*(100-R _{BS}) =	3.13	
	$GE_{AC} = 0.00$	32*TI*(100-R _{AB}) =	0.81	
	=>	GE'AC =	1.01	(add 0.2 ft safety factor)
		AC Thickness =	0.58	ft
	=>	AC Thickness =	0.60	ft (round up to the nearest 0.05 ft)
		$G_{f,AC} =$	1.74	
		GE _{AC} =	1.04	
	$GE_{AB} = GE_A$	$_{C+AB} - GE_{AC} =$	2.08	
		AB thickness=	1.89	ft
	=>	AB Thickness=	1.90	ft (round up to the nearest 0.05 ft)
		GE _{AB} =	2.09	G _{f, AB} =1.1
Design S	ection:			
		AC	Î	0.60 ft
		AB	Ī	190 ft

PAVEMENT DESIGN PER HIGHWAY DESIGN MANUAL, CHAP. 600

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Design Case: AC over AB ov	er AS

Case: AC over	AB over .	<u>45</u>		
Design TI= R _{BS} = R _{AB} =	11.5 15 78	input input		
$GE_{TOTAL} = 0.$.0032*TI	*(100-R _{BS}) =	3.13	
$GE_{AC} = 0.00$	32*TI*(10	00-R _{AB}) =	0.81	
=>	GE' _{AC} = AC thic	kness =	1.01 0.58	(add 0.2 ft safety factor) ft
=>	AC Thio G _{f, AC} = GE _{AC} =	ckness=	0.60 1.74 1.04	ft (round up to the nearest 0.05 ft)
$GE_{AB+AC} = 0$.0032*TI*	(100-R _{AS}) =	1.84	
=>	GE _{AC+A}	в=	2.04	(add 0.2 ft safety factor)
GE _{AB} = GE _A =>	_{С+АВ} -GE AB thic	AC = kness=	1.00 0.90	
=>	AB Thio GE _{AB} =	kness=	0.95 1.05	ft (round up to the nearest 0.05 ft) $G_{f, AB}{=}1.1$
GE _{AS} = GE ₇ =>	_{OTAL} -GE, AS Thic	_{AB} -GE _{AC} = ckness=	1.04 1.05	ft (round up to the nearest 0.05 ft)

Design Section:

AC	0.60	ft
AB	0.95	ft
AS	1.05	ft
Base Soil	-	

PAVEMENT DESIGN PER HIGHWAY DESIGN MANUAL, CHAP. 600

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Base Soil

Design Case: Full depth AC

Design TI= R _{BS} =	11.5 input 15 input		
$GE_{AC} = 0.00$	32*TI*(100-R _{BS}) =	3.13	
=>	GE' _{AC} =	3.23	(add 0.1 ft safety factor)
=>	AC Thickness=	1.40	
	AC Thickness-	1 40	ft (round up to the nearest 0.05

Design Section:

AC 1.40 ft Base Soil

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Design Case: AC over AB

	Design TI= R _{BS} = R _{AB} =	10 10 78	input input			
	$GE_{AC*AB} = 0.$	0032*TI*((100-R _{BS}) =	2.88		
	$GE_{AC} = 0.0032 * TI*(100 - R_{AB}) =$			0.70		
	=>	GE' _{AC} =		0.90	(add 0.2 ft safety factor)	
		AC Thic	kness =	0.51	ft	
	=>	AC Thic G _{f AC} =	kness =	0.55 1.81	ft (round up to the nearest 0.05 f	t)
		GE _{AC} =		1.00		
	$GE_{AB} = GE_{AC+AB} - GE_{AC} =$ AB thickness=		1.88 1.71	ft		
	=>	AB Thic GE _{AB} =	kness=	1.75 1.93	ft (round up to the nearest 0.05 f $G_{\rm f,AB}{=}1.1$	t)
Design Se	ection:					
	AC			ĺ	0.55 ft	
		A	в	Ī	1.75 ft	

PAVEMENT DESIGN PER HIGHWAY DESIGN MANUAL, CHAP. 600

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Design (

Case: AC over	AB over	AS		
Design TI= R _{BS} = R _{AB} =	10 10 78	input input		
R _{AS} =	50	check		
$GE_{TOTAL} = 0.$.0032*TI	*(100-R _{BS}) =	2.88	
$GE_{AC} = 0.00$	32*TI*(10	00-R _{AB}) =	0.70	
=>	GE'AC=		0.90	(add 0.2 ft safety factor)
	AC thic	kness =	0.51	ft
=>	AC Thi G _{f, AC} = GE _{AC} =	ckness=	0.55 1.81 1.00	ft (round up to the nearest 0.05 ft)
$GE_{AB+AC} = 0.$	0032*TI	(100-R _{AS}) =	1.60	
=>	GE _{AC+A}	.B=	1.80	(add 0.2 ft safety factor)
$GE_{AB} = GE_A$ =>	_{C+AB} -GE AB thic	_{AC} = kness=	0.80 0.73	
=>	AB Thi GE _{AB} =	ckness=	0.75 0.83	ft (round up to the nearest 0.05 ft) $G_{\rm f,AB}{=}1.1$
$GE_{AS} = GE_T$	_{OTAL} -GE AS Thi	_{AB} -GE _{AC} = ckness=	1.06 1.10	ft (round up to the nearest 0.05 ft)

Design Section:

AC	0.55	ft
AB	0.75	ft
AS	1.10	ft
Base Soil	-	

PAVEMENT DESIGN PER HIGHWAY DESIGN MANUAL, CHAP. 600

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Base Soil

Design Case: Full depth AC

Design TI= R _{BS} =	10 10	input input		
$GE_{AC} = 0.003$	32*TI*(1	00-R _{BS}) =	2.88	
=>	GE' _{AC} =		2.98	(add 0.1 ft safety factor)
=>	AC Thi	ckness=	1.25	
=>	AC Thi	ckness=	1.25	ft (round up to the nearest 0.0

Design Section:

AC 1.25 ft Base Soil

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Design Case: AC over AB

	Design TI= R _{BS} = R _{AB} =	10 15 78	input input		
	$GE_{AC*AB} = 0.$	0032*TI*((100-R _{BS}) =	2.72	
	$GE_{AC} = 0.003$	32*TI*(10	0-R _{AB}) =	0.70	
	=>	GE' _{AC} =		0.90	(add 0.2 ft safety factor)
		AC Thic	kness =	0.51	ft
	=>	AC Thic	kness =	0.55	ft (round up to the nearest 0.05 ft)
		GE		1.01	
		OLAC -		1.00	
	$GE_{AB} = GE_{AB}$	C+AB - GE	AC =	1.72	
		AB thick	iness=	1.57	ft
	=>	AB Thic	kness=	1.60	ft (round up to the nearest 0.05 ft)
		GE _{AB} =		1.76	G _{f, AB} =1.1
Design Se	ection:				
		A	С		0.55 ft
		A	в	Ī	1.60 ft

PAVEMENT DESIGN PER HIGHWAY DESIGN MANUAL, CHAP. 600

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Docian	Casa	AC over	AR	over	45	

Case: AC over A	AB over J	<u>45</u>		
Design TI=	10	input		
R _{BS} =	15	input		
R _{AB} =	78			
R _{AS} =	50	check		
$GE_{TOTAL} = 0.$.0032*TI	$(100-R_{BS}) =$	2.72	
$GE_{AC} = 0.003$	32*TI*(10	0-R _{AB}) =	0.70	
=>	GE' _{AC} =		0.90	(add 0.2 ft safety factor)
	AC thicl	kness =	0.51	ft
=>	AC Thic	kness=	0.55	ft (round up to the nearest 0.05 ft)
	G _{f, AC} =		1.81	
	GE _{AC} =		1.00	
$GE_{AB+AC} = 0.$	0032*TI*	(100-R _{AS}) =	1.60	
=>	GE _{AC+A}	3=	1.80	(add 0.2 ft safety factor)
$GE_{AB} = GE_{A}$	C+AB -GE	1C =	0.80	
=>	AB thick	iness=	0.73	
=>	AB Thic GE _{AB} =	kness=	0.75 0.83	ft (round up to the nearest 0.05 ft) $G_{f,AB}{=}1.1$
$GE_{AS} = GE_T$	DTAL -GE	_{IB} -GE _{AC} =	0.90	ft (round up to the pearest 0.05 ft)
			2.50	

Design Section:

AC	0.55	ft
АВ	0.75	ft
AS	0.90	ft
Base Soil		

PAVEMENT DESIGN PER HIGHWAY DESIGN MANUAL, CHAP. 600

PROJECT NAME: Mathilda Avenue Improvements at SR 237 and US 101 PROJECT NO.: 2014-129-PSE

Base Soil

Design Case: Full depth AC

Design TI= R _{BS} =	10 15	input input		
$GE_{AC} = 0.003$	32*TI*(10	10-R _{BS}) =	2.72	(add 0.1 ft safety factor)
=>	AC Thi	kness=	1.20	(add 0.1 ft salety factor)
=>	AC Thi	kness=	1.20	ft (round up to the nearest 0.05 ft)

Design Section:

AC 1.20 ft Base Soil

APPENDIX E

MEMORANDUM

To: WMH Corporation 50 West San Fernando, Suite 950 San Jose, CA 95113

Attn: Mr. Tim Lee, P.E.

Jary Tarit

January 5, 2015 Job No. 2014-129-GEO

From: Gary Parikh, P.E., G.E., 666

Subject: Mathilda Avenue Improvements at SR 237 and US 101, Sunnyvale, California Preliminary Pavement Condition Evaluation

Parikh Consultants Inc. (PCI) has visually evaluated the pavement condition of the Mathilda Avenue Improvements at SR 237 and US 101 (Project). The field review was performed on December 31, 2014. The existing pavement consists of Asphalt Concrete sections (Hot Mix Asphalt). For the purposes of this memorandum, Mathilda Avenue is considered to follow an east-west alignment. The Project extends from Innovation Way to the east to W. Ahwanee Avenue to the west in the City of Sunnyvale, Santa Clara County. Some of the ramps associated with the two interchanges are also planned to be modified. No mainline improvements for either US 101 or SR 237 are currently proposed.

- The pavement conditions along the ramps at SR 237 and US 101 are reasonably good. It appears that most of the ramps have been resurfaced or slurry sealed 'recently'. Based on study of aerial photographs it appears that SR 237 ramps were probably resurfaced in August of 2011. US 101 ramps look like were worked on much prior to 2010. No significant cracking or pavement distress was noted.
- 2. Within the project limits, pavement conditions along Mathilda Avenue vary significantly. The segment to the east of SR 237 that is generally beyond the Caltrans right-of-way is in reasonably good condition. There are quite a few utility patches due to activities related to various developments. These patches are showing cracking and obvious difference in ground elevations. In the event this roadway has to be upgraded, it should require grind and overlay with possible pavement enhancement fabric to retard reflective cracking.
- 3. The pavement condition beneath the SR 237 Undercrossing and the Caltrans ROW indicates significant wear and distress. There are various repairs and patches, transverse cracks and loss of binder. This indicates the age of the pavement. Grinding and overlay with some reconstruction should be required which should also include pavement reinforcement fabric to maintain uniformity and control reflective cracking.

Mathilda Avenue Improvements at SR 237 and US 101 Job No: 2014-129-GEO January 5, 2015 Page 2

- 4. Pavement conditions west of Ross Drive in the west bound direction shows significant distress conditions. This is visible in all three lanes till it reaches US 101 overcrossing. The inside lane shows indications of pavement fatigue represented by some depressions along the wheel lines and the outside two lanes have significant alligator and joint cracking. Relatively the condition of this segment is the worst within the project limits. In addition to grinding and overlay there are areas that should be reconstructed. Overlay thicknesses may also be significant since the need to control reflective cracking. It is possible that based on the repairs required this segment may qualify for a full reconstruction.
- 5. The segment west of US 101 is in reasonably good condition and limited wear is noted. Alligator cracks are not seen as noted on the east of the US 101. Some joint cracking is visible along the longitudinal direction. Limited overlay and or slurry seal might be enough to get this segment in a reasonable condition.
- 6. The east bound segment between US 101 Overcrossing and SR 237 has also some wear and the surface shows loss of asphalt binder and overall wear. Some joint cracking is visible along the longitudinal direction. Utility related patches or pavement repairs are visible which may be due its age.
- 7. Pavement condition between Ross Drive to SR 237 interchange is similar to the eastbound condition. This is apparently maintained by Caltrans and has its own repair and maintenance thresholds and schedule. This segment indicates significant wear and distress. There are various repairs and patches, longitudinal and transverse cracks and loss of binder. This indicates the age of the pavement. Grinding and overlay with some reconstruction should be required which should also include pavement reinforcement fabric to maintain uniformity and control reflective cracking.

At all the intersections there are signal loops and sensors that would have to be repaired and or replaced in the event the pavement is repaired, overlaid and or reconstructed.

It is recommended that in the event an overlay option is considered a Deflection Test based (performance based) study be conducted. This should provide deflections of the existing pavement and the required overlay thickness to control reflective cracking using the proposed Traffic Index values. However in the event the Traffic Index has changed significantly the pavement may have to be reconstructed as the overlay requirements may be significant which would defeat the cost/benefit of the overlay work. Also the overlay requires the existing failed areas to be completely removed and replaced with full depth HMA. This should be considered in the cost analyses.

Attached are some pictures of the pavement conditions along selected locations.

Views looking towards west - WB Mathilda Ave. between SR 237 and Ross Drive

Views looking towards east - EB Mathilda Ave. between US 101 and Ross Drive

Views looking towards east - SR 237 IC (South-West side of Interchange)

Mathilda Avenue Improvements at SR 237 and US 101, Sunnyvale, CA

JOB NO.: 2014-129-GEO

Views looking towards west - WB Mathilda Ave. between SR 237 and US 101

Views looking towards west - WB Mathilda Ave. between SR 237 and US 101

Views looking towards east - along WB Mathilda Ave. between SR 237 and US 101

Mathilda Avenue Improvements at SR 237 and US 101, Sunnyvale, CA

JOB NO.: 2014-129-GEO

Views looking at EB Mathilda Ave. between US 101 and Ahwanee Drive

Views looking at EB Mathilda Ave. between SR 237 & Innovation Drive

Mathilda Avenue Improvements at SR 237 and US 101, Sunnyvale, CA

JOB NO.: 2014-129-GEO

Figure 3

APPENDIX F

DEFLECTION ANALYSIS for CITY OF SUNNYVALE MATHILDA AVENUE & MOFFETT PARK DRIVE

Pavement Engineering Inc. You can ride on our reputation June 22, 2017

Project No. 160293-01

Mr. Gary Parikh Parikh Consultants, Inc. 2360 Qume Drive, Suite A San Jose, CA 95131

Subject: Deflection Analysis for the Mathilda Avenue Improvement Project

Dear Gary:

In accordance with your request, we have completed the pavement deflection analysis for the Mathilda Avenue Improvement Project for the City of Sunnyvale and are herein providing our findings and recommendations.

INTRODUCTION

The Mathilda Avenue Improvement Project consists of Mathilda Avenue from North of San Aleso Avenue to Innovation Way and Moffett Park Drive from Mathilda Avenue to Innovation Way.

The field work for our analysis consisted of deflection testing using our Dynaflect pavement deflection testing device in general accordance with CTM 356; coring to measure the existing structural section; sampling the native soil to determine R-value; and a visual condition survey. This work was performed by Brett Long and Alex Long of PEI's laboratory staff. Visual evaluations were performed by Bill Long.

We have summarized our analysis on the deflection summary sheets for Mathilda Avenue & Moffett Park Drive in the City of Sunnyvale in this report. Included on the summary sheets are the coring data for existing pavement thickness, visual condition survey, deflection test results analysis and recommendations.

ANALYSIS

The rehabilitation alternatives have been designed using structural requirements from the deflection analysis contained in CTM 356, reflective cracking criteria and the visual condition survey. Reflection cracking requirements are determined as a minimum of one-half the bonded layer section per current Caltrans recommendations for reflective cracking. Engineering judgment and experience has been used in applying these criteria to the individual street segments.

The rehabilitation alternatives evaluated in this analysis include HMA and RHMA overlays; milling and replacement with HMA; and Cold In-place Recycling (CIR).

Serving California since 1987

Mr. Gary Parikh June 22, 2017 160293-01 Page 2

OVERLAYS

The recommended overlays must meet both the requirements of the structural requirement from the deflection analysis and reflective cracking requirements. The minimum recommended overlay thickness is 1-3/4 inches to ensure that the HMA can be properly compacted.

For HMA overlays, typically a 1/2-inch HMA leveling course is recommended if pavement fabric is placed. The leveling course provides a uniform surface and fills cracks to insure the fabric is bonded properly to the overlay.

PEI also recommends placing a 1/2-inch leveling course under RHMA overlays. The leveling course helps provide a uniform surface for placing the RHMA to insure the thickness of the RHMA overlay. Minimum thickness for RHMA overlays is critical for compaction.

MILLING AND REPLACEMENT

Milling and replacement is generally recommended when overlay requirements for reflective cracking exceed 3-1/2 inches, but are structurally adequate by deflection. Overlays which exceed 3-1/2 inches are not usually feasible due to geometric constraints such as curb and gutter.

Mill and replacement alternatives allow for resurfacing the pavement to match the existing profile. This alternative can also reduce the lift thickness to meet reflective cracking requirements if the pavement is structurally adequate. The expected pavement life for milling and replacing is similar to an overlay. Milling and replacement is a green alternative also, because asphalt suppliers use the removed asphalt in Rap mixes.

COLD IN-PLACE RECYCLING (CIR)

CIR is an option when pavements are structurally adequate. It can be especially useful when pavements are thick (greater than 6 inches). CIR helps reduce crack history in thicker pavement and provides a green approach by using existing materials. CIR consists of either an emulsion process or a foaming process. The cold foam process can include mixing aggregate base with the asphalt.

Mr. Gary Parikh June 22, 2017 160293-01 Page 3

PROJECT ANALYSIS

PEI is providing multiple alternatives for rehabilitating the pavements. The estimated design life of each recommended alternative is provided in the following table:

Proposed Treatment	Expected Service Life
HMA and RHMA Overlays	7-12 years
Milling and Replacement	8-12 years
Cold In-place Recycling (CIR)	8-12 years

Each alternative should be evaluated by the design engineer for cost, constructability and impact on the public during construction.

The Deflection Summary Sheets following this report provide the coring data, deflection data, visual condition evaluations and recommended repair strategies. Following the summary sheets are the deflection data print outs.

MATERIALS AND CONSTRUCTION

HMA recommended for leveling courses less than 1 inch should be constructed using 3/8 inch maximum HMA or #4 mix. The leveling course should be rolled and compacted with an 8 to 12 ton pneumatic-tire roller.

HMA with thicknesses of 1 to 2 inches should be constructed using 1/2-inch maximum HMA. HMA layer thicknesses greater than 2 inches can be constructed with either 1/2- or 3/4-inch maximum HMA.

RHMA should be constructed with 3/8 inches maximum aggregate for overlays less than 2 inches and 1/2-inch maximum size aggregate for overlays greater than or equal to 2 inches.

All HMA and RHMA work should be placed in accordance with Caltrans 2010 Section 39 using the standard process.

LIMITATIONS

This report has been prepared based on the indicated field testing and application of our knowledge of pavement technology. The repair strategies in this report are based upon industry standards.

Our professional services were performed, findings obtained, and recommendations prepared in accordance with generally accepted engineering principles and practices. No warranty is either expressed or implied.

Mr. Gary Parikh June 22, 2017 160293-01 Page 4

SUMMARY

We performed deflection testing for the subject project and have provided recommendations and repair strategies for resurfacing the pavement of Mathilda Avenue and Moffett Park Drive in City of Sunnyvale.

If you have any questions, please do not hesitate to give me a call at (530) 224-4535.

Very truly yours, PAVEMENT ENGINEERING INC.

William J. Long, P.E. Senior Principal Engineer

- Attachments: Mathilda Avenue Innovation Way to Moffett Park Drive Mathilda Avenue - Moffett Park Drive to Highway 101 Mathilda Avenue - Highway 101 to San Aleso Avenue Moffett Park Drive - Mathilda Avenue to Innovation Way
- pc: C File 160293-01

MATHILDA AVENUE

Innovation Way to Moffett Park Drive

Core <u>No.</u>	Lane & <u>Direction</u>	Location	HMA Layer <u>(Inches)</u>	Fabric <u>Present</u>	AB Layer <u>(Inches)</u>
9	SB3	300 Feet from Innovation Way	5-1/2	Y	0
10	SB2	315 Feet from Innovation Way	6-3/4	Y	0
11	SB3	750 Feet from Innovation Way	7	Y	0
12	SB2	800 Feet from Innovation Way	6-3/4	Y	0
13	SB1	850 Feet from Innovation Way	8-1/2		0
14	NB2	300 Feet from Moffett Park Drive	7	Y	0
15	NB1	400 Feet from Moffett Park Drive	5-1/2		0
16	NB1	550 Feet from Moffett Park Drive	6-1/2		0
17	NB2	650 Feet from Moffett Park Drive	8-1/2	Y	0
18	NB3	800 Feet from Moffett Park Drive	12	Y	0
19	SB1	350 Feet from Innovation Way	7	Y	7
20	NB3	150 Feet from Moffett Park Drive	12-3/4	Y	0

CORING LOG

3485 Sacramento Drive, Suite A · San Luis Obispo, CA · 93401-7156 · Tel. (805) 781-2265 · Fax (805) 7811-2267 20260 Skypark Drive · Redding, CA · 96002-9221 · Tel. (530) 224-4535 · Fax (530) 224-4539 5702 Marsh Drive, Unit T · Pacheco, CA · 94553 · Tel. (925) 872-3472 3820 Cypress Drive, Suite 3 · Petaluma, CA · 94954-5613 · Tel. (707) 769-5330 · Fax (707) 769-5333

Project No. 160293-01

Mathilda Avenue (Innovation Way to Moffett Park Dr.) City of Sunnyvale

Direction/Lane	Traffic Index <u>(TI)</u>	Tolerable	80th <u>Percentile</u>	HMA Overlay Requirement <u>(Inches)</u>
NB1	11.5	10.00	8.79	0
NB2	11.5	10.00	12.09	1/2
NB3	11.5	10.00	7.06	0
SB1	11.5	10.00	12.32	3/4
SB2	11.5	10.00	11.74	1/2
SB3	11.5	10.00	14.13	1-1/2

STRUCTURAL REQUIREMENTS (by Deflection Analysis)

REFLECTIVE CRACKING REQUIREMENTS

Direction/Lane	HMA Overlay Requirement <u>(Inches)*</u>	Pavement Fabric Required (Yes or No)
NB1	2	Yes
NB2	2-3/4	Yes
NB3	5-1/4	Yes
SB1	2-3/4	Yes
SB2	2-1/4	Yes
SB3	2-1/4	Yes

*Required overlay by reflective cracking is half the existing AC thickness – if pavement fabric is used then this criteria can be reduced by 1-1/4 inch with at least a minimum overlay requirement of 1-3/4 inches.

VISUAL CONDITIONS

The southbound #1 and #2 lanes of Mathilda Ave. from Innovation Way to Moffett Park Dr. exhibit slight shrinkage cracking and small areas of moderate to severe alligator cracking. The southbound #3 lane appears to be a part of a widening project and is in good condition. Previous pavement repairs have been performed.

The northbound lanes of Mathilda Ave. from Moffett Park Dr. to Innovation Way are in generally good condition, exhibiting no distresses with the exception of the northbound #1 lane, which exhibits moderate to severe raveling as it approaches Innovation Way.

3485 Sacramento Drive, Suite A · San Luis Obispo, CA · 93401-7156 · Tel. (805) 781-2265 · Fax (805) 7811-2267 20260 Skypark Drive · Redding, CA · 96002-9221 · Tel. (530) 224-4535 · Fax (530) 224-4539 5702 Marsh Drive, Unit T · Pacheco, CA · 94553 · Tel. (925) 872-3472 3820 Cypress Drive, Suite 3 · Petaluma, CA · 94954-5613 · Tel. (707) 769-5330 · Fax (707) 769-5333

ANALYSIS

Mathilda Ave. from Innovation Way to Moffett Park Dr. is structurally deficient by up to 1-1/2 inches in the southbound lanes. Only the #2 lane in the northbound direction shows a slight structural deficiency. Because the northbound lanes are generally in good condition, rehabilitation alternatives could be limited to the southbound lanes only.

RECOMMENDATIONS

Crack Fill & Slurry Seal

The northbound lanes, overall, are in good condition, with the exception of the #3 lane, which is structurally deficient by 1/2 inch. We recommend applying a crack seal and Type II slurry to the roadway. The slurry seal does not address the structural deficiency of the northbound #3 lane, however, there is currently no cracking.

Overlay

HMA

We recommend removing and replacing base failures to a depth of 6 inches, placing a 3/4 inch HMA leveling course, pavement fabric and a 2 inch HMA overlay.

RHMA

We recommend removing and replacing pavement base failures to a depth of 6 inches, placing a 1/2 inch HMA leveling course and a 1-3/4 inch RHMA overlay.

These recommendations can also be applied to both the southbound and northbound lanes to maintain a consistent road condition. The overlay does not meet reflective cracking criteria of the northbound #3 lane, but there is currently no cracking in this lane.

The overlay options will eliminate the curb reveal at the median.

Milling and Replacement

HMA

We recommend milling off 3 inches of the existing pavement structure, 4 inch digouts of base failures, placing a 1 inch HMA leveling course and a 2 inch HMA overlay. RHMA can be used in place of HMA for the surface course. RHMA is a better inhibitor of reflective cracking.

This option can be applied to both the northbound and southbound lanes.

Cold In-Place Recycling (CIR)

We recommend cold in-place recycling to a depth of 3 inches and placing a 2 inch RHMA overlay.

This option can be applied to both the northbound and southbound lanes.

3485 Sacramento Drive, Suite A · San Luis Obispo, CA · 93401-7156 · Tel. (805) 781-2265 · Fax (805) 7811-2267 20260 Skypark Drive · Redding, CA · 96002-9221 · Tel. (530) 224-4535 · Fax (530) 224-4539 5702 Marsh Drive, Unit T · Pacheco, CA · 94553 · Tel. (925) 872-3472 3820 Cypress Drive, Suite 3 · Petaluma, CA · 94954-5613 · Tel. (707) 769-5330 · Fax (707) 769-5333
Mathilda Avenue (Innovation Way to Moffett Park Dr.) City of Sunnyvale

As previously discussed in the report, rehabilitation alternatives may have different anticipated service lives. The design engineer should evaluate each alternative based on cost, constructability and impact on the public.

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

Page 1

01/04/17

Parikh Consultants

Road:	Mathilda Avenue	Survey Date:	
From:	Moffett Park Drive	Thickness:	0.54
To:	Innovation Way	Traffic Index:	11.50
Lane/Line:	NB1	Project Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	5.85	7.87	9.94	1.10

Road Surface

Thickness	Traffic	Index
0.54	11.5	50

Structural Design

Tolerable	80th Percentile	90th Percentile	% Reduction	GE Deficient
10.00	8.79	9.27	0.00	0.00

Redding	Petaluma	San Luis Obispo
(530) 224-4535	(707) 769-5330	(805) 781-2265

01/04/17

Page 2

Road:	Mathilda Avenue	Survey Date:	
From:	Moffett Park Drive	Thickness:	0.54
To:	Innovation Way	Traffic Index:	11.50
Lane/Line:	NB1	Project Number:	160293

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 1

Parikh Consultants

Road: From: To: Lane/Line:	Mathilda Ave Moffett Parl Innovation W NB2	enue ¢ Drive Nay	Survey I Thicknes Traffic Proiect	Date: ss: Index: Number:	0.71 11.50 160293		
Deflection Deflection	Data Analys Readings (E	is quivalent Deflec	tometer 1	Jnits)			
No. of Tes 22	ts Low 5.63	Mean 9.27		High 15.83		Std. 1 3.3	Dev. 6

Road Surface

Thickness	Traffic	Index
0.71	11.5	0

Structural Design

Tolerable	80th	Percentile	90th Percentile	% Reduction	GE Deficient
10.00		12,09	13.57	17.29	0.08

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 2

Road:	Mathilda Avenue	Survey Date:	
From:	Moffett Park Drive	Thickness:	0.71
То:	Innovation Way	Traffic Index:	11,50
Lane/Line:	NB2	Project Number:	160293

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 1

Parikh Consultants

Road: From: To: Lane/Line:	Mathilda Avenue Moffett Park Drive Innovation Way NB3	Survey Da Thickness Traffic I Project N	ate: 5: Index: Number:	1.06 11.50 160293		
Deflection	Data Analysis					
Deflection	Readings (Equivalent	Deflectometer Un	nits)			
No. of Tes 22	ts Low 4.94	Mean 6.24	High 8,12		Std. D 0.9'	ev. 7

Road Surface

Thickness	Traffic	Index
1.06	11.5	50

Structural Design

Tolerable	80th	Percentile	90th	Percentile	010	Reduction	GE	Deficient
10.00		7.06		7.49		0.00		0.00

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

(

Page 2

Road:	Mathilda Avenue	Survey Date:	
From:	Moffett Park Drive	Thickness:	1.06
То:	Innovation Way	Traffic Index:	11.50
Lane/Line:	NB3	Project Number:	160293

Redding

Petaluma San Luis Obispo

(530) 224-4535 (707) 769-5330

(805) 781-2265

01/04/17

Page 1

Parikh Consultants

Road:	Mathilda Avenue	Survey Date:	
From:	Innovation Way	Thickness:	0.71
То:	Moffett Park Drive	Traffic Index:	11.50
Lane/Line:	SB1	Project Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	6.53	10.52	15.38	2.14

Road Surface

Thickness	Traffic Index	c
0.71	11.50	

Structural Design

Tolerable	80th Percentile	90th Percentile	% Reduction	GE Deficient
10.00	12.32	13.26	18.84	0.10

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 2

Road:	Mathilda Avenue	Survey Date:	
From:	Innovation Way	Thickness:	0.71
То:	Moffett Park Drive	Traffic Index:	11.50
Lane/Line:	SB1	Project Number:	160293

Redding

Petaluma

San Luis Obispo

(530) 224-4535 (707) 769-5330

(805) 781-2265

Page 1

01/04/17

Parikh Consultants

Road:	Mathilda Avenue	Survey Da	te:	
From:	Innovation Way	Thickness	:	0.56
то:	Moffett Park Drive	Traffic In	ndex:	11.50
Lane/Line:	SB2	Project N	umber:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	5.17	9.73	16.51	2.39

Road Surface

Thickness	Traffic	Index
0.56	11.5	50

Structural Design

Tolerable	80th Percentile	90th Percentile	% Reduction	GE Deficient
10.00	11.74	12.79	14.79	0.07

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 2

Road:	Mathilda Avenue	Survey Date:	
From:	Innovation Way	Thickness:	0.56
То:	Moffett Park Drive	Traffic Index:	11.50
Lane/Line:	SB2	Project Number:	160293

Redding (530) 224-4535

 Petaluma
 San Luis Obispo

 (707) 769-5330
 (805) 781-2265

Page 1

01/04/17

Parikh Consultants

Road:	Mathilda Avenue	Survey Date:	
From:	Innovation Way	Thickness:	0.58
то:	Moffett Park Drive	Traffic Index:	11.50
Lane/Line:	SB3	Project Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	8.12	11.85	16.97	2.71

Road Surface

Thickness	Traffic	Index
0.58	11.5	50

Structural Design

Tolerable	80th 1	Percentile	90th Percentile	00	Reduction	GE	Deficient
10.00		14.13	15.32		29.23		0.23

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

(

Page 2

Road:	Mathilda Avenue	Survey Date:	
From:	Innovation Way	Thickness:	0.58
To:	Moffett Park Drive	Traffic Index:	11.50
Lane/Line:	SB3	Project Number:	160293

Mathilda Avenue Innovation Way to Moffett Park Drive

MATHILDA AVENUE – INNOVATION WAY TO MOFFETT PARK DRIVE NEAR INNOVATION WAY (SB)

MATHILDA AVENUE – INNOVATION WAY TO MOFFETT PARK DRIVE NEAR MOFFETT PARK DRIVE (SB)

MOFFETT PARK DRIVE – FROM MATHILDA AVENUE TO INNOVATION WAY NEAR MOFFETT PARK DRIVE (NB)

MOFFETT PARK DRIVE – FROM MATHILDA AVENUE TO INNOVATION WAY NEAR INNOVATION WAY (NB)

Project No. 160293-01

Deflection and Structural Analysis City of Sunnyvale

MATHILDA AVENUE

Moffett Park Drive to Highway 101

CORING LOG

Core <u>No.</u>	Lane & <u>Direction</u>	Location	HMA Layer <u>(Inches)</u>	AB Layer <u>(Inches)</u>	LTB/ <u>CTB</u>
21	SB3	625 Feet from Moffett Park Dr.	6-1/2	10	0
22	SB1	1,250 Feet from Moffett Park Dr.	7	9	0
23	NB1	200 Feet from Bridge Deck	14-1/2	3	0
24	NB5	1,500 Feet from Bridge Deck	18-1/2	3	0
25	NB4	210 Feet from Bridge Deck	20	0	0
26	NB3	240 Feet from Bridge Deck	7	0	1
27	NB2	520 Feet from Bridge Deck	11	0	5
28	NB5	700 Feet from Bridge Deck	14	0	0
29	NB4	830 Feet from Bridge Deck	6	0	0
30	NB3	1,180 Feet from Bridge Deck	5-1/2	0	0
31	NB2	1,240 Feet from Bridge Deck	5-1/2	0	0
32	NB1	1,680 Feet from Bridge Deck	6-1/2	0	0
33	SB2	510 Feet from Moffett Park Dr.	8	0	0
34	SB1	850 Feet from Moffett Park Dr.	6	0	2
35	SB3	1,020 Feet from Moffett Park Dr.	4-1/2	0	0
36	SB2	1,400 Feet from Moffett Park Dr.	6	0	1

Mathilda Avenue (Moffett Park Dr. to Hwy. 101) City of Sunnyvale

Direction/Lane	Traffic Index <u>(TI)</u>	Tolerable	80th <u>Percentile</u>	HMA Overlay Requirement <u>(Inches)</u>
NB1	11.5	10.00	10.78	1/4
NB2	11.5	10.00	10.54	1/4
NB3	11.5	10.00	12.63	3/4
NB4	11.5	10.00	10.50	1/4
NB5	11.5	10.00	11.98	1/2
SB1	11.5	10.00	10.19	1/4
SB2	11.5	10.00	10.33	1/4
SB3	11.5	10.00	18.83	3-3/4

STRUCTURAL REQUIREMENTS (by Deflection Analysis)

REFLECTIVE CRACKING REQUIREMENTS

Direction/Lane	HMA Overlay Requirement <u>(Inches)*</u>	Pavement Fabric Required (Yes or No)
NB1	2-1/4	Yes
NB2	2-1/4	Yes
NB3	2-1/4	Yes
NB4	2-1/4	Yes
NB5	8	Yes
SB1	2-1/4	Yes
SB2	2-3/4	Yes
SB3	2	Yes

*Required overlay by reflective cracking is half the existing AC thickness – if pavement fabric is used then this criteria can be reduced by 1-1/4 inch with at least a minimum overlay requirement of 1-3/4 inches.

VISUAL CONDITIONS

The southbound lanes exhibit slight to moderate block shrinkage cracking and some alligator cracking and moderate to severe raveling with significant loss of aggregate of several locations particularly at joints. Some areas of alligator cracking have progressed to base failure. The base failures are more prevalent in the #3 lane. Previous maintenance includes pavement repairs and small areas of thin maintenance overlays. Some areas of disbonding have occurred.

The pavement in the northbound lanes also exhibit block shrinkage cracking, moderate to severe raveling and areas of alligator cracking. The base failure is mainly in the northbound #4 and #5 lanes. The raveling is less severe in the northbound lanes than the southbound lanes.

ANALYSIS

Mathilda Ave. from Moffett Park Dr. to Highway 101 is slightly structurally deficient by between 1/4 and 3/4 inch of HMA. The exceptions are the southbound #3 lane, which is structurally deficient by 3-3/4 inches of HMA and the northbound #5 lane that requires 8 inches of HMA to meet reflective cracking criteria. The southbound #3 and northbound #5 lanes will require partial reconstruction as part of any rehabilitation alternative.

RECOMMENDATIONS

Overlay

HMA

We recommend removing and replacing pavement base failures to a depth of 6 inches, milling off and replacing with 5 inches of HMA in the southbound #3 lane, and 4 inches of HMA in the northbound #5 lane. A 3/4 inch HMA leveling course, pavement fabric and a 2 inch HMA overlay should be placed across all lanes.

RHMA

We recommend removing and replacing pavement base failures to a depth of 6 inches, milling off and replacing 5 inches of HMA in the southbound #3 lane and placing 3 inches of HMA in the northbound #5 lane. A 1/2 inch HMA leveling course, pavement fabric and a 1-3/4 inch RHMA overlay should be placed across all lanes.

The overlay options will eliminate the curb reveal at the median.

Milling and Replacement

We recommend milling off 2-1/2 inches of existing asphalt concrete, 4 inch digouts of base failures, placing a 1/2 inch HMA leveling course and a 2 inch RHMA overlay. The exception is the southbound #3 lane, which will require removing 5 inches of existing asphalt beyond the 2-1/2 inches of milled pavement and replacement with 5 inches of new HMA placed in 2 lifts.

Cold In-Place Recycling (CIR)

We recommend milling off 2 inches of the existing pavement, cold in-place recycling to a depth of 3 inches and placing a 2 inch RHMA overlay. The exception is the southbound #3 lane, which requires removal of an additional 5 inches of the existing pavement and placing 5 inches of new HMA placed in two lifts prior to placing the 2 inch RHMA overlay.

As previously discussed in the report, rehabilitation alternatives may have different anticipated service lives. The design engineer should evaluate each alternative based on cost, constructability and impact on the public.

Redding (530) 224-4535

Petaluma (707) 769-5330

San Luis Obispo (805) 781-2265

01/04/17

Page 1

Parikh Consultants

Road:	Mathilda Avenue	Survey Date:		
From:	Highway 101 Bridge Deck	Thickness:	0.58	
To:	Moffett Park Drive	Traffic Index:	11.50	
Lane/Line:	NB1	Project Number:	160293	

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	4.94	8.31	20.60	2.94

Road Surface

Thickness	Traffic	Index
0.58	11.5	50

Structural Design

Tolerable	80th Perc	entile 90th	n Percentile	%]	Reduction	GE	Deficient
10.00	10.	78	12.07		7.20		0.02

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 2

Road:	Mathilda	Avenue	Survey Date:	
From:	Highway	101 Bridge Deck	Thickness:	0.58
To:	Moffett	Park Drive	Traffic Index:	11.50
Lane/Line:	NB1		Project Number:	160293

Redding (530) 224-4535

(707) 769-5330

Petaluma San Luis Obispo (805) 781-2265

01/04/17

Page 1

Parikh Consultants

Road:	Mathilda Avenue	Survey Date:	
From:	Highway 101 Bridge Deck	Thickness:	0.58
То:	Moffett Park Drive	Traffic Index:	11.50
Lane/Line:	NB2	Project Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	3.81	8.27	13.57	2.71

Road Surface

Thickness	Traffic Index
0.58	11.50

Structural Design

Tolerable	80th Per	rcentile	90th	Percentile	%	Reduction	GE	Deficient
10.00	10	0.54		L1.73		5,11		0.02

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 2

Road:	Mathilda	a Avenue	Survey Date:	
From:	Highway	101 Bridge Deck	Thickness:	0.58
То:	Moffett	Park Drive	Traffic Index:	11.50
Lane/Line:	NB2		Project Number:	160293

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Parikh Consultants

Road:	Mathilda	Avenue		Survey I	Date:	
From:	Highway	101 Bridge	Deck	Thicknes	s:	0.58
To:	Moffett	Park Drive		Traffic	Index:	11.50
Lane/Line:	NB3			Project	Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	4.72	9.02	21.96	4.29

Road Surface

Thickness	Traffic Index
0.58	11.50

Structural Design

Tolerable	80th	Percentile	90th Percentile	% Reduction	GE Deficient
10.00		12.63	14.52	20.79	0.12

HMA Overlay 0.06

Page 1

 Redding
 Petaluma
 San Luis Obispo

 (530) 224-4535
 (707) 769-5330
 (805) 781-2265

01/04/17

Page 2

Road:	Mathilda	Avenue	Survey Date:	
From:	Highway	101 Bridge Deck	Thickness:	0.58
To:	Moffett	Park Drive	Traffic Index:	11.50
Lane/Line:	NB3		Project Number:	160293

Redding (530) 224-4535

(707) 769-5330

Petaluma San Luis Obispo (805) 781-2265

01/04/17

Page 1

Parikh Consultants

Road:	Mathilda	Avenue	Survey I	Date:	
From:	Highway	101 Bridge Deck	Thicknes	ss:	0.58
то:	Moffett	Park Drive	Traffic	Index:	11.50
Lane/Line:	NB4		Project	Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	3.36	7.81	12.89	3.20

Road Surface

Thickness	Traffic I	ndex
0.58	11.50	

Structural Design

Tolerable	80th	Percentile	90th Percen	tile % Reduction	GE Deficient
10.00		10.50	11.91	4.74	0.02

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 2

Road:	Mathilda Avenue				Survey Date:			
From:	Highway	101	Bridge	Deck	Thicknes	s:	0.58	
To:	Moffett	Park	c Drive		Traffic	Index:	11.50	
Lane/Line:	NB4				Proiect.	Number:	160293	

Redding

(530) 224-4535 (707) 769-5330

Petaluma San Luis Obispo

(805) 781-2265

01/04/17

Parikh Consultants

Road:	Mathilda Avenue	Survey Date:			
From:	Highway 101 Bridge Deck	Thickness:	1.54		
То:	Moffett Park Drive	Traffic Index:	11.50		
Lane/Line:	NB5	Project Number:	160293		

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	3.13	7.92	27.18	4.82

Road Surface

Thickness	Traffic	Index
1.54	11.5	50

Structural Design

Tolerable	80th Percentile	90th Percentile	% Reduction	GE Deficient
10.00	11.98	14.10	16.50	0.08

HMA Overlay 0.04

Page 1

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 2

Road:	Mathilda	a Avenue	Survey Date:			
From:	Highway	101 Bridge	Deck	Thicknes	s:	1.54
To:	Moffett	Park Drive		Traffic	Index:	11.50
Lane/Line:	NB5			Project	Number:	160293

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 1

Parikh Consultants

Road: From: To: Lane/Line:	Mathilda Avenue Moffett Park Drive Highway 101 Bridge SB1	Deck	Survey Date: Thickness: Traffic Index: Project Number:	0.58 11.50 160293
Deflection	Data Analysis			
Deflection	Readings (Equivale	ent Deflec	tometer Units)	
No. of Tes 22	Low 6.08	Mean 8.55	High 14.93	Std. Dev. 1.94

Road Surface

Thickness	Traffic	Index
0.58	11.5	50

Structural Design

Tolerable	80th Per	centile 9	0th	Percentile	%	Reduction	GE	Deficient
10.00	10	.19	1	1.04		1.83		0.01

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 2

Road:	Mathilda Avenue	Survey Date:	
From:	Moffett Park Drive	Thickness:	0.58
То:	Highway 101 Bridge Deck	Traffic Index:	11.50
Lane/Line:	SB1	Project Number:	160293

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

Page 1

01/04/17

Parikh Consultants

Road: From: To: Lane/Line:	Mathilda Avenu Moffett Park I Highway 101 B: SB2	ue Drive ridge Deck	Survey Date: Thickness: Traffic Index: Proiect Number:	0.66 11.50 160293
Deflection	Data Analysis	3		
Deflection	Readings (Equ	ivalent Deflect	ometer Units)	
No. of Tes 22	ts Low 1.77	Mean 8.37	High 11.30	Std. Dev. 2.34
Road Surfa	ce			
	Tł	hickness Tra:	ffic Index	

hickness	Traffic	Index
0.66	11.5	50

Structural Design

Tolerable	80th Percentile	90th Percentile	% Reduction	GE Deficient
10.00	10.33	11.36	3.23	0.01

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 2

Road:	Mathilda Avenue	Survey Date:		
From:	Moffett Park Drive	Thickness:	0.66	
То:	Highway 101 Bridge Deck	Traffic Index:	11.50	
Lane/Line:	SB2	Project Number:	160293	

Redding

Petaluma San Luis Obispo

(530) 224-4535

(707) 769-5330

(805) 781-2265

Page 1

01/04/17

Parikh Consultants

Road:	Mathilda	a Ave	enue		Survey I	Date:	
From:	Moffett	Park	. Drive		Thicknes	ss:	0.54
То:	Highway	101	Bridge	Deck	Traffic	Index:	11.50
Lane/Line:	SB3				Project.	Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	17	3.36	12.48	24.91	7.55

Road Surface

Thickness	Traffic	Index
0.54	11.5	50

Structural Design

Tolerable	80th Percentile	90th Percentile	% Reduction	GE Deficient
10.00	18.83	22.15	46,88	0.57

 Redding
 Petaluma
 San Luis Obispo

 (530) 224-4535
 (707) 769-5330
 (805) 781-2265

01/04/17

Page 2

Road:	Mathilda Avenue				Survey Date:		
From:	Moffett	Park	C Drive		Thicknes	ss:	0.54
то:	Highway	101	Bridge	Deck	Traffic	Index:	11.50
Lane/Line:	SB3				Project	Number:	160293

Mathilda Avenue Moffett Park Drive to Highway 101

MATHILDA AVENUE – MOFFETT PARK DRIVE TO HIGHWAY 101 NEAR HIGHWAY 237 (SB)

MATHILDA AVENUE – MOFFETT PARK DRIVE TO HIGHWAY 101 NEAR ROSS ROAD (SB)

MATHILDA AVENUE – MOFFETT PARK DRIVE TO HIGHWAY 101 SOUTH OF ROSS ROAD INTERSECTION (SB)

MATHILDA AVENUE – MOFFETT PARK DRIVE TO HIGHWAY 101 NEAR HIGHWAY 101 (NB)

MATHILDA AVENUE – MOFFETT PARK DRIVE TO HIGHWAY 101 NEAR ROSS ROAD (NB)

MATHILDA AVENUE – MOFFETT PARK DRIVE TO HIGHWAY 101 NEAR HIGHWAY 237 (NB)

Project No. 160293-01

Deflection and Structural Analysis City of Sunnyvale

MATHILDA AVENUE

Highway 101 to San Aleso Avenue

CORING LOG

Core <u>No.</u>	Lane & <u>Direction</u>	<u>Location</u>	HMA Layer <u>(Inches)</u>	Fabric <u>Present</u>	AB Layer (Inches)	LTB/ <u>CTB</u>
37	SB3	530 Feet from Bridge Deck	6-1/4	Y	9	0
38	SB1	1,500 Feet from Bridge Deck	18-1/2	Y	2	0
39	NB3	315 Feet from San Aleso Ave.	7	Y	5	0
40	NB1	1,450 Feet from San Aleso Ave.	18-1/2	Y	0	0
41	NB2	430 Feet from San Aleso Ave.	10		0	0
42	NB1	530 Feet from San Aleso Ave.	8	(0	0
43	NB4	880 Feet from San Aleso Ave.	9	·	0	0
44	NB3	1,130 Feet from San Aleso Ave.	7		0	7
45	NB2	1,320 Feet from San Aleso Ave.	7-1/2		0	0
46	NB4	1,600 Feet from San Aleso Ave.	6-1/2		0	3
47	SB1	130 Feet from Bridge Deck	6-3/4	Y	0	0
48	SB2	500 Feet from Bridge Deck	7	Y	0	3-1/2
49	SB4	880 Feet from Bridge Deck	10	Y	0	0
50	SB3	1,230 Feet from Bridge Deck	5-1/2		0	0
51	SB2	1,400 Feet from Bridge Deck	9-1/2	Y	0	0
52	SB4	1,650 Feet from Bridge Deck	7	Y	0	0

Project No. 160293-01

Mathilda Avenue (Hwy. 101 to San Aleso Ave.) City of Sunnyvale

Direction/Lane	Traffic Index (<u>TI)</u>	<u>Tolerable</u>	80th <u>Percentile</u>	HMA Overlay Requirement <u>(Inches)</u>
NB1	11.5	10.00	7.29	0
NB2	11.5	10.00	8.99	0
NB3	11.5	10.00	13.31	1-1/4
NB4	11.5	10.00	13.12	1
SB1	11.5	10.00	10.48	1/4
SB2	11.5	10.00	9.97	0
SB3	11.5	11.00	15.33	1-1/2
SB4	11.5	10.00	13.70	1-1/2

STRUCTURAL REQUIREMENTS (by Deflection Analysis)

REFLECTIVE CRACKING REQUIREMENTS

Direction/Lane	HMA Overlay Requirement <u>(Inches)*</u>	Pavement Fabric Required (Yes or No)
NB1	2-3/4	Yes
NB2	3-1/4	Yes
NB3	2-1/4	Yes
NB4	2-3/4	Yes
SB1	2-3/4	Yes
SB2	2-3/4	Yes
SB3	1-1/2	Yes
SB4	2-3/4	Yes

*Required overlay by reflective cracking is half the existing AC thickness – if pavement fabric is used then this criteria can be reduced by 1-1/4 inch with at least a minimum overlay requirement of 1-3/4 inches.

VISUAL CONDITIONS

The existing pavement exhibits slight to moderate block shrinkage cracking, slight to moderate raveling and areas of alligator cracking. Some areas of alligator cracking have progressed to base failure.

ANALYSIS

The pavements are generally structurally adequate in the #1 and #2 lanes in both directions. The pavement is structurally deficient by 1 to 1-1/2 inches of HMA in the northbound and southbound #3 and #4 lanes. Reflective cracking criteria controls the overlay requirement.

RECOMMENDATIONS

Overlay

HMA

We recommend removing and replacing pavement base failures to a depth of 6 inches, placing a 1 inch HMA leveling course, pavement fabric and a 2 inch HMA overlay.

RHMA

We recommend removing and replacing pavement base failures to a depth of 6 inches, placing a 1/2 inch HMA leveling course and a 2 inch RHMA overlay.

The overlay options will eliminate the curb reveal at the median.

Milling and Replacement

We recommend milling off 3 inches, placing a 1 inch HMA leveling course and placing 2 inches of new HMA. RHMA can be used in place of HMA for the overlay.

Cold In-Place Recycling (CIR)

We recommend milling off 2-1/2 inches of the existing pavement, cold in-place recycling to a depth of 3 inches and placing a 2-1/2 inch RHMA overlay.

As previously discussed in the report, rehabilitation alternatives may have different anticipated service lives. The design engineer should evaluate each alternative based on cost, constructability and impact on the public.

Redding

(530) 224-4535

(707) 769-5330

Petaluma San Luis Obispo (805) 781-2265

Page 1

01/04/17

Parikh Consultants

Road:	Mathilda Avenue	Survey Date:	
From:	San Aleso Avenue	Thickness:	0.66
То:	Highway 101 Bridge Deck	Traffic Index:	11.50
Lane/Line:	NB1	Project Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of	Tests	Low	Mean	High	Std. Dev.
	22		3.58	6.20	7.44	1.30

Road Surface

Thickness	Traffic Index
0.66	11.50

Structural Design

Tolerable	80th	Percentile	90th	Percentile	00	Reduction	GE	Deficient
10.00		7.29		7.86		0.00		0.00

HMA Overlay 0.00

Redding

Petaluma San Luis Obispo (805) 781-2265

(530) 224-4535 (707) 769-5330

01/04/17

(

Page 2

Parikh Consultants

Road:	Mathilda Avenue	Survey Date:	
From:	San Aleso Avenue	Thickness:	0.66
то:	Highway 101 Bridge Deck	Traffic Index:	11.50
Lane/Line:	NB1	Project Number:	160293

(

Redding

Petaluma (707) 769-5330 San Luis Obispo (805) 781-2265

(530) 224-4535

.,

01/04/17

Page 1

Parikh Consultants

Road:	Mathilda Avenue	Survey Date:	
From:	San Aleso Avenue	Thickness:	0.75
то:	Highway 101 Bridge Deck	Traffic Index:	11.50
Lane/Line:	NB2	Project Number:	160293
			3

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	5.63	7.83	11.75	1.37

Road Surface

Thickness	Traffic	Index
0.75	11.5	50

Structural Design

Tolerable	80th	Percentile	90th Percentile	8	Reduction	GE	Deficient
10.00		8.99	9.59		0.00		0.00

HMA Overlay 0.00

 Redding
 Petaluma
 San Luis Obispo

 (530) 224-4535
 (707) 769-5330
 (805) 781-2265

01/04/17

Page 2

Road:	Mathilda Avenue	Survey Date:	
From:	San Aleso Avenue	Thickness:	0.75
то:	Highway 101 Bridge Deck	Traffic Index:	11.50
Lane/Line:	NB2	Project Number:	160293

Redding (530) 224-4535 (707) 769-5330

Petaluma San Luis Obispo (805) 781-2265

01/04/17

Page 1

Parikh Consultants

Road: From: To: Lane/Line:	Mathilda San Aleso Highway 1 NB3	Avenue Avenue 01 Bridge De	ck	Survey I Thicknes Traffic Project	Date: 55: Index: Number:	0.58 11.50 160293		
Deflection	Data Anal	lysis						
Deflection	Readings	(Equivalent	Deflect	cometer l	Units)			
No. of Tes 22	ts Lo 4.	₩ 72	Mean 9.94		High 18.10		Std. 4.(Dev. D2
Pood Gurfa		. –						

Road Surface

Thickness	Traffic	Index
0.58	11.5	0

Structural Design

Tolerable	80th Percentile	90th Percentile	% Reduction	GE Deficient
10.00	13.31	15.08	24.88	0.17

HMA Overlay 0.09

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 2

Road:	Mathilda Avenue	Survey Date:	
From:	San Aleso Avenue	Thickness:	0.58
То:	Highway 101 Bridge Deck	Traffic Index:	11.50
Lane/Line:	NB3	Project Number:	160293

Redding

Petaluma San Luis Obispo (805) 781-2265

(530) 224-4535

01/04/17

(707) 769-5330

Page 1

Parikh Consultants

Road:	Mathilda Avenue	Survey Date:	
From:	250 ft South of Ahwanee	Aven Thickness:	0.66
то:	Highway 101 Bridge Deck	Traffic Index:	11.50
Lane/Line:	NB4	Project Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	8.12	11.09	16.06	2.42

Road Surface

Thickness	Traffic	Index
0.66	11.5	50

Structural Design

Tolerable	80th	Percentile	90th Percentile	% Reduction	GE Deficient
10.00		13.12	14.18	23.78	0.16

HMA Overlay 0.08

Redding

Petaluma San Luis Obispo (805) 781-2265

(530) 224-4535 (707) 769-5330

01/04/17

Page 2

Road:	Mathilda Avenue	Survey Date:	
From:	250 ft South of Ahwanee Av	en Thickness:	0.66
То:	Highway 101 Bridge Deck	Traffic Index:	11.50
Lane/Line:	NB4	Project Number:	160293

Redding

Petaluma

San Luis Obispo

(530) 224-4535 (707) 769-5330

(805) 781-2265

Page 1

01/04/17

Parikh Consultants

Road:	Mathilda Avenue	Survey Date:	
From:	Highway 101 Bridge Deck	Thickness:	0.66
To:	San Aleso Avenue	Traffic Index:	11.50
Lane/Line:	SB1	Project Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	6.53	8.94	14.93	1.84

Road Surface

Thickness	Traffic	Index
0.66	11.5	50

Structural Design

Tolerable	80th Percentile	90th Percentile	% Reduction	GE Deficient
10.00	10.48	11.29	4.59	0.01

HMA Overlay 0.01

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 2

Road:	Mathilda Avenue	Survey Date:	
From:	Highway 101 Bridge Deck	Thickness:	0.66
То:	San Aleso Avenue	Traffic Index:	11.50
Lane/Line:	SB1	Project Number:	160293

Redding (530) 224-4535

Petaluma (707) 769-5330

San Luis Obispo (805) 781-2265

01/04/17

Parikh Consultants

Road:	Mathilda Avenue	Survey Date:	
From:	Highway 101 Bridge Deck	Thickness:	0.66
то:	San Aleso Avenue	Traffic Index:	11.50
Lane/Line:	SB2	Project Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	5.85	8.58	11.30	1.65

Road Surface

Thickness	Traffic	Index
0.66	11.5	50

Structural Design

Tolerable	80th Percentile	90th Percentile	% Reduction	GE Deficient
10.00	9.97	10.69	0.00	0.00

HMA Overlay 0.00

Page 1

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 2

Road:	Mathilda Avenue	Survey Date:	
From:	Highway 101 Bridge Deck	Thickness:	0.66
то:	San Aleso Avenue	Traffic Index:	11.50
Lane/Line:	SB2	Project Number:	160293

Redding (530) 224-4535

 Petaluma
 San Luis Obispo

 (707) 769-5330
 (805) 781-2265

Page 1

01/04/17

Parikh Consultants

Road:	Mathilda Avenue	Survey Date:	
From:	Highway 101 Bridge Deck	Thickness:	0.46
То:	San Aleso Avenue	Traffic Index:	11.50
Lane/Line:	SB3	Project Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of	Tests	Low	Mean	High	Std. Dev.
	22		7.89	12.48	17.88	3.39

Road Surface

Thickness	Traffic Index	
0.46	11.5	50

Structural Design

Tolerable	80th Percentile	90th Percentile	% Reduction	GE Deficient
11.00	15.33	16.82	28.24	0.22

HMA Overlay 0.12

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 2

Road:	Mathilda Avenue	Survey Date:	
From:	Highway 101 Bridge Deck	Thickness:	0.46
То:	San Aleso Avenue	Traffic Index:	11.50
Lane/Line:	SB3	Project Number:	160293

Redding

Petaluma San Luis Obispo

(530) 224-4535

(707) 769-5330

(805) 781-2265

Page 1

01/04/17

Parikh Consultants

Road:	Mathilda Avenue	Survey Date:	
From:	Highway 101 Ramp	Thickness:	0.66
То:	San Aleso Avenue	Traffic Index:	11.50
Lane/Line:	SB4	Project Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	6.76	11,73	15.38	2.35

Road Surface

Thickness	Traffic	Index
0.66	11.5	50

Structural Design

Tolerable	80th Percentile	90th Percentile	% Reduction	GE Deficient
10.00	13.70	14.74	27.03	0.20

HMA Overlay 0.11

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 2

Road:	Mathilda Avenue	Survey Date:	
From:	Highway 101 Ramp	Thickness:	0.66
То:	San Aleso Avenue	Traffic Index:	11.50
Lane/Line:	SB4	Project Number:	160293

B

<u>Mathilda Avenue</u> Highway 101 to San Aleso Avenue

MATHILDA AVENUE – HIGHWAY 101 TO SAN ALESO AVENUE NEAR HIGHWAY 101 (SB)

MATHILDA AVENUE – HIGHWAY 101 TO SAN ALESO AVENUE NEAR ALMANOR AVENUE INTERSECTION (SB)

MATHILDA AVENUE – HIGHWAY 101 TO SAN ALESO AVENUE NORTH OF SAN ALESO AVENUE (SB)

MATHILDA AVENUE – HIGHWAY 101 TO SAN ALESO AVENUE NORTH OF SAN ALESO AVENUE (NB)

MATHILDA AVENUE – HIGHWAY 101 TO SAN ALESO AVENUE NEAR EASTBOUND ON-RAMP TO HIGHWAY 101 (NB)

MATHILDA AVENUE – HIGHWAY 101 TO SAN ALESO AVENUE NEAR HIGHWAY 101 (NB)

MOFFETT PARK DRIVE

Mathilda Avenue to Innovation Way

CORING LOG

Core <u>No.</u>	Lane & <u>Direction</u>	Location	HMA Layer <u>(Inches)</u>	Fabric <u>Present</u>	AB Layer <u>(Inches)</u>
1	EB2	400 Feet from Innovation Way	16-1/2		0
2	WB2	400 Feet from Mathilda Ave.	14-1/2		2-1/2
3	WB1	600 Feet from Mathilda Ave.	14	Y	0
4	WB2	800 Feet from Mathilda Ave.	10-1/2	Y	0
5	WB1	1,000 Feet from Mathilda Ave.	10	Y	0
6	EB1	250 Feet from Innovation Way	18-1/2		0
7	EB2	650 Feet from Innovation Way	15-1/2	-	0
8	EB1	850 Feet from Innovation Way	17-1/2		0

STRUCTURAL REQUIREMENTS

Direction/Lane	<u>Traffic Index</u> <u>(TI)</u>	<u>Tolerable</u>	<u>80th</u> <u>Percentile</u>	HMA Overlay Requirement (Inches)
EB1	11.5	10.00	7.64	0
EB2	11.5	10.00	4.78	0
WB1	11.5	10.00	5.01	0
WB2	11.5	10.00	7.58	0

(by Deflection Analysis)

Direction/Lane	HMA Overlay Requirement <u>(Inches)*</u>	Pavement Fabric Required (Yes or No)
EB1	8	Yes
EB2	7	Yes
WB1	5-3/4	Yes
WB2	6	Yes

REFLECTIVE CRACKING REQUIREMENTS

*Required overlay by reflective cracking is half the existing AC thickness – if pavement fabric is used then this criteria can be reduced by 1-1/4 inch with at least a minimum overlay requirement of 1-3/4 inches.

VISUAL CONDITIONS

The existing pavement exhibits areas of flushing and bleeding with minor rutting, slight shrinkage cracking, slight raveling and some shrinkage cracking around utilities. Previous maintenance includes pavement repairs.

ANALYSIS

The pavement in this section is structurally adequate. Reflective cracking criteria controls the rehabilitation requirements, but there is little to no cracking to retard.

RECOMMENDATIONS

Maintenance

We recommend removing areas of bleeding and rutting to a depth of 4 inches, cracking sealing and placing a Type II slurry seal.

Overlay

Not recommended due because of the flushing/bleeding and rutting occurring in the existing pavement.

Milling and Replacement

We recommend milling and replacing to a depth of 3-1/2 inches, placing 1 inch HMA leveling course and a 2-1/2 inch RHMA overlay. This alternative will remove the pavement at the surface that is bleeding. It should reduce the potential of future bleeding and rutting.

This option can be applied to both the northbound and southbound lanes.

Cold In-Place Recycling (CIR)

We recommend milling off 2-1/2 inches of the existing pavement, cold in-place recycling to a depth of 3 inches and placing a 2-1/2 inch RHMA overlay.

This option can be applied to both the northbound and southbound lanes.

As previously discussed in the report, rehabilitation alternatives may have different anticipated service lives. The design engineer should evaluate each alternative based on cost, constructability and impact on the public.

Redding

Petaluma

San Luis Obispo

(530) 224-4535

(707) 769-5330

(805) 781-2265

01/04/17

Page 1

Parikh Consultants

Road:	Moffett Park Drive	Survey	Date:	
From:	Mathilda Avenue	Thickne	ss:	1.54
To:	Innovation Way	Traffic	Index:	11.50
Lane/Line:	EB1	Project	Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	3.58	6.16	11.75	1.76

Road Surface

Thickness	Traffic	Index
1.54	11.5	50

Structural Design

Tolerable	80th Percentile	90th Percentile	% Reduction	GE Deficient
10.00	7.64	8.42	0.00	0.00

HMA Overlay 0.00

Redding

Petaluma San Luis Obispo

(530) 224-4535 (707) 769-5330

(805) 781-2265

01/04/17

Page 2

Road:	Moffett Park Drive	Survey Date:	
From:	Mathilda Avenue	Thickness:	1.54
То:	Innovation Way	Traffic Index:	11.50
Lane/Line:	EB1	Project Number:	160293

Petaluma San Luis Obispo Redding (530) 224-4535 (707) 769-5330 (805) 781-2265

01/04/17

		Parikh	Consultant	cs		
Road: From: To: Lane/Line:	Moffett Park Mathilda Ave Innovation W EB2	Drive nue ay	Survey Thickne Traffic Proiect	Date: ess: Index: Number:	1.38 11.50 160293	
Deflection	Data Analys	ls				
Deflection	Readings (Ed	quivalent	Deflectometer	Units)		

No.	of Tests	Low	Mean	High	Std. Dev.
	22	2.22	3.94	5.40	0.99

Road Surface

Thickness	Traffic Index	
1.38	11.50	

Structural Design

Tolerable	80th	Percentile	90th	Percentile	010	Reduction	GE	Deficient
10.00		4.78		5.21		0.00		0.00

HMA Overlay 0.00

Page 1

Redding

Petaluma San Luis Obispo

(530) 224-4535 (707) 769-5330

(805) 781-2265

01/04/17

(

Page 2

Road:	Moffett Park Drive	Survey Date:	
From:	Mathilda Avenue	Thickness:	1.38
то:	Innovation Way	Traffic Index:	11.50
Lane/Line:	EB2	Project Number:	160293

Redding (530) 224-4535 **Petaluma S** (707) 769-5330

San Luis Obispo (805) 781-2265

01/04/17

1 105 5550

Page 1

Parikh Consultants

Road:	Moffett Park Drive Innovation Way	Survey Date: Thickness:	1.16
To:	Mathilda Avenue	Traffic Index:	11.50
Lane/Line:	WB1	Project Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	3.58	4.46	6.31	0.65

Road Surface

Thickness	Traffic	Index
1.16	11.5	50

Structural Design

Tolerable	80th Percenti	le 90th Percentile	% Reduction	GE Deficient
10.00	5.01	5.29	0.00	0.00

HMA Overlay 0.00

Redding

Petaluma San Luis Obispo

(530) 224-4535 (707) 769-5330

(805) 781-2265

01/04/17

Page 2

Road:	Moffett Park Drive	Survey Date:	
From:	Innovation Way	Thickness:	1.16
то:	Mathilda Avenue	Traffic Index:	11.50
Lane/Line:	WB1	Project Number:	160293

PAVEMENT ENGINEERING INCORPORATED

Redding (530) 224-4535 (707) 769-5330

Petaluma San Luis Obispo (805) 781-2265

01/04/17

Page 1

Parikh Consultants

Road:	Moffett Park Drive	Survey Date:	
From:	Innovation Way	Thickness:	1.21
то:	Mathilda Avenue	Traffic Index:	11.50
Lane/Line:	WB2	Project Number:	160293

Deflection Data Analysis

Deflection Readings (Equivalent Deflectometer Units)

No.	of Tests	Low	Mean	High	Std. Dev.
	22	3.81	6.30	8.80	1.53

Road Surface

Thickness	Traffic	Index
1.21	11.5	50

Structural Design

Tolerable	80th Percentile	90th Percentile	% Reduction	GE Deficient
10.00	7.58	8.25	0.00	0.00

HMA Overlay 0.00

PAVEMENT ENGINEERING INCORPORATED

ReddingPetalumaSan Luis Obispo(530) 224-4535(707) 769-5330(805) 781-2265

01/04/17

Page 2

Parikh Consultants

Road:	Moffett Park Drive	Survey Date:	
From:	Innovation Way	Thickness:	1.21
то:	Mathilda Avenue	Traffic Index:	11.50
Lane/Line:	WB2	Project Number:	160293

<u>Moffett Park Drive</u> Mathilda Avenue to Innovation Way

MOFFETT PARK DRIVE – FROM MATHILDA AVENUE TO INNOVATION WAY NEAR MATHILDA AVENUE INTERSECTION (WB)

MOFFETT PARK DRIVE – FROM MATHILDA AVENUE TO INNOVATION WAY FROM MATHILDA AVENUE (WB)

MOFFETT PARK DRIVE – FROM MATHILDA AVENUE TO INNOVATION WAY FROM MATHILDA AVENUE (WB)

MOFFETT PARK DRIVE – FROM MATHILDA AVENUE TO INNOVATION WAY NEAR INNOVTION WAY (EB)

MOFFETT PARK DRIVE – FROM MATHILDA AVENUE TO INNOVATION WAY NEAR MATHILDA AVENUE (EB)

Project No. 160293-01

Boring Log City of Sunnyvale

Moffett Park Drive

Innovation Way to Mathilda Avenue

<u>CORES</u>

Core <u>No.</u>	Lane & <u>Direction</u>	Location	HMA Layer <u>(Inches)</u>	Fabric <u>Present</u>	AB Layer <u>(Inches)</u>
1	EB2	400 Feet from Innovation Way	16-1/2		0
2	WB2	400 Feet from Mathilda Avenue	14-1/2		2-1/2
3	WB1	600 Feet from Mathilda Avenue	14	Y	0
4	WB2	800 Feet from Mathilda Avenue	10-1/2	Y	0
5	WB1	1,000 Feet from Mathilda Avenue	10	Y	0
6	EB1	250 Feet from Innovation Way	18-1/2		0
7	EB2	650 Feet from Innovation Way	15-1/2		0
8	EB1	850 Feet from Innovation Way	17-1/2		0

3485 Sacramento Drive, Suite A · San Luis Obispo, CA · 93401-7156 · Tel. (805) 781-2265 · Fax (805) 7811-2267 20260 Skypark Drive · Redding, CA · 96002-9221 · Tel. (530) 224-4535 · Fax (530) 224-4539 5702 Marsh Drive, Unit T · Pacheco, CA · 94553 · Tel. (925) 872-3472 3820 Cypress Drive, Suite 3 · Petaluma, CA · 94954-5613 · Tel. (707) 769-5330 · Fax (707) 769-5333

Mathilda Avenue

Innovation Way to Moffett Park Drive

<u>CORES</u>

Core <u>No.</u>	Lane & <u>Direction</u>	Location	HMA Layer <u>(Inches)</u>	Fabric <u>Present</u>	AB Layer <u>(Inches)</u>
9	SB3	300 Feet from Innovation Way	5-1/2	Y	0
10	SB2	315 Feet from Innovation Way	6-3/4	Y	0
11	SB3	750 Feet from Innovation Way	7	Y	0
12	SB2	800 Feet from Innovation Way	6-3/4	Y	0
13	SB1	850 Feet from Innovation Way	8-1/2		0
14	NB2	300 Feet from Moffett Park Drive	7	Y	0
15	NB1	400 Feet from Moffett Park Drive	5-1/2		0
16	NB1	550 Feet from Moffett Park Drive	6-1/2		0
17	NB2	650 Feet from Moffett Park Drive	8-1/2	Y	0
18	NB3	800 Feet from Moffett Park Drive	12	Y	0
19	SB1	350 Feet from Innovation Way	7	Y	7
20	NB3	150 Feet from Moffett Park Drive	12-3/4	Y	0

3485 Sacramento Drive, Suite A · San Luis Obispo, CA · 93401-7156 · Tel. (805) 781-2265 · Fax (805) 7811-2267
20260 Skypark Drive · Redding, CA · 96002-9221 · Tel. (530) 224-4535 · Fax (530) 224-4539
5702 Marsh Drive, Unit T · Pacheco, CA · 94553 · Tel. (925) 872-3472
3820 Cypress Drive, Suite 3 · Petaluma, CA · 94954-5613 · Tel. (707) 769-5330 · Fax (707) 769-5333

Boring Log City of Sunnyvale

(

<u>Mathilda Avenue</u>

HWY 101 Bridge Deck to Moffett Park Drive

<u>CORES</u>

Core <u>No.</u>	Lane & <u>Dir</u>	Location	HMA Layer <u>(Inches)</u>	Fabric <u>Present</u>	AB Layer <u>(Inches)</u>	LTB/ CTB
21	SB3	625 Feet from Moffett Park Drive	6-1/2		10	0
22	SB1	1,250 Feet from Moffett Park Drive	7		9	0
23	NB1	200 Feet from Bridge Deck	14-1/2		3	0
24	NB5	1,500 Feet from Bridge Deck	18-1/2		3	0
25	NB4	210 Feet from Bridge Deck	20		0	0
26	NB3	240 Feet from Bridge Deck	7		0	1
27	NB2	520 Feet from Bridge Deck	11		0	5
28	NB5	700 Feet from Bridge Deck	14		0	0
29	NB4	830 Feet from Bridge Deck	6		0	0
30	NB3	1,180 Feet from Bridge Deck	5-1/2		0	0
31	NB2	1,240 Feet from Bridge Deck	5-1/2		0	0
32	NB1	1,680 Feet from Bridge Deck	6-1/2		0	0
33	SB2	510 Feet from Moffett Park Drive	8		0	0
34	SB1	850 Feet from Moffett Park Drive	6		0	2
35	SB3	1,020 Feet from Moffett Park Drive	4-1/2		0	0
36	SB2	1,400 Feet from Moffett Park Drive	6		0	1

3485 Sacramento Drive, Suite A · San Luis Obispo, CA · 93401-7156 · Tel. (805) 781-2265 · Fax (805) 7811-2267 20260 Skypark Drive · Redding, CA · 96002-9221 · Tel. (530) 224-4535 · Fax (530) 224-4539 5702 Marsh Drive, Unit T · Pacheco, CA · 94553 · Tel. (925) 872-3472 3820 Cypress Drive, Suite 3 · Petaluma, CA · 94954-5613 · Tel. (707) 769-5330 · Fax (707) 769-5333

Boring Log City of Sunnyvale

Mathilda Avenue

HWY 101 Bridge Deck to San Aleso Avenue

CORES

Core <u>No.</u>	Lane & <u>Dir</u>	Location	HMA Layer <u>(Inches)</u>	Fabric <u>Present</u>	AB Layer <u>(Inches)</u>	LTB/ CTB
37	SB3	530 Feet from Bridge Deck	6-1/4	Y	9	0
38	SB1	1,500 Feet from Bridge Deck	18-1/2	Y	2	0
39	NB3	315 Feet from San Aleso Avenue	7	Y	5	0
40	NB1	1,450 Feet from San Aleso Avenue	18-1/2	Y	0	0
41	NB2	430 Feet from San Aleso Avenue	10	-	0	0
42	NB1	530 Feet from San Aleso Avenue	8		0	0
43	NB4	880 Feet from San Aleso Avenue	9		0	0
44	NB3	1,130 Feet from San Aleso Avenue	7		0	7
45	NB2	1,320 Feet from San Aleso Avenue	7-1/2		0	0
46	NB4	1,600 Feet from San Aleso Avenue	6-1/2		0	3
47	SB1	130 Feet from Bridge Deck	6-3/4	Y	0	0
48	SB2	500 Feet from Bridge Deck	7	Y	0	3-1/2
49	SB4	880 Feet from Bridge Deck	10	Y	0	0
50	SB3	1,230 Feet from Bridge Deck	5-1/2		0	0
51	SB2	1,400 Feet from Bridge Deck	9-1/2	Y	0	0
52	SB4	1,650 Feet from Bridge Deck	7	Y	0	0

3485 Sacramento Drive, Suite A · San Luis Obispo, CA · 93401-7156 · Tel. (805) 781-2265 · Fax (805) 7811-2267
20260 Skypark Drive · Redding, CA · 96002-9221 · Tel. (530) 224-4535 · Fax (530) 224-4539
5702 Marsh Drive, Unit T · Pacheco, CA · 94553 · Tel. (925) 872-3472
3820 Cypress Drive, Suite 3 · Petaluma, CA · 94954-5613 · Tel. (707) 769-5330 · Fax (707) 769-5333

<u>Core Sample Photos</u> Moffett Park Drive & Mathilda Avenue

B

APPENDIX G

AltPipe

Project EA: 04-4H29001

Project Engineer:

Location:

Description:

SCI-237-2.7/3.3, SCI-101-45.2/45.8

n: Interchange and roadway improvements

Steel Pipes

	B-6	B-9	B-13	B-14	
	Pipe Diameter (in)	12	12	12	12
Ріре Туре	Coat	Minimum	Thickn	ess (in)
Corrugated Steel Pipe Helical Corrugations 2 2/3" x 1/2" Corrugations	GAL	0.079			
	AL2	0.052			0.052
	BC	0.064	0.079		0.079
	BCI	0.064	0.064	0.079	0.064
	PS	0.052	0.052	0.052	0.052

Aluminum Pipes

DSN/U	B-6	B-9	B-13	B-14	
Pipe Diameter (in)	12	12	12	12	
Ріре Туре	Minimum Thickness (in)				
Corrugated Aluminum Pipe Annular Corrugations 2 2/3" x 1/2" Corrugations	0.060			0.060	
Corrugated Aluminum Pipe Helical Corrugations 2 2/3" x 1/2" Corrugations	0.060			0.060	

Plastic Pipes

DSN/U	B-6	B-14			
Pipe Diameter (in)	12	12	12	12	
Ріре Туре	Availability				
PVC Corrugated	Allowable	Allowable	Allowable	Allowable	
HDPE Corrugated - Type S	Allowable	Allowable	Allowable	Allowable	

Reinforced Concrete Pipes

DSN/U	B-6	В-9	B-13	B-14
Pipe Diameter (in)	12	12	12	12
Steel Cover (in)	0.75	0.75	0.75	0.75
Sacks of Cement	5	5	5	5
Percentage Water	11.1	11.1	11.1	11.1

Other Information

DSN/U	B-6	B-9	B-13	B-14	

Soil pH	7.8	7.69	7.33	7.59
Minimum Soil Resistivity (ohm-cm)	1980	1260	860	1500
Sulfate Concentration (ppm)	80.5	45.5	10.1	52.3
Chloride Concentration (ppm)	135.6	9.8	3.3	11.4
Abrasion Level	1	1	1	1
2–5 Year Flow Velocity (ft/sec)	10	10	10	10
Design Service Life (years)	50	50	50	50
Height of Cover (ft)	10	10	10	10

AltPipe

Project EA: 04-4H29001

Project Engineer:

Location:

Description:

SCI-237-2.7/3.3, SCI-101-45.2/45.8

n: Interchange and roadway improvements

Steel Pipes

	B-6	B-9	B-13	B-14	
	Pipe Diameter (in)	15	15	15	15
Ріре Туре	Coat	Minimum	Thickn	ess (in)
Corrugated Steel Pipe Helical Corrugations 2 2/3" x 1/2" Corrugations	GAL	0.079			
	AL2	0.052			0.052
	BC	0.064	0.079		0.079
	BCI	0.064	0.064	0.079	0.064
	PS	0.052	0.052	0.052	0.052

Aluminum Pipes

DSN/U	B-6	B-9	B-13	B-14
Pipe Diameter (in)	15	15	15	15
Ріре Туре	Minimum Thickness (in)			
Corrugated Aluminum Pipe Annular Corrugations 2 2/3" x 1/2" Corrugations	0.060			0.060
Corrugated Aluminum Pipe Helical Corrugations 2 2/3" x 1/2" Corrugations	0.060			0.060

Plastic Pipes

DSN/U	B-6	B-14			
Pipe Diameter (in)	15	15	15	15	
Ріре Туре	Availability				
PVC Corrugated	Allowable	Allowable	Allowable	Allowable	
HDPE Corrugated - Type S	Allowable	Allowable	Allowable	Allowable	

Reinforced Concrete Pipes

DSN/U	B-6	В-9	B-13	B-14
Pipe Diameter (in)	15	15	15	15
Steel Cover (in)	0.75	0.75	0.75	0.75
Sacks of Cement	5	5	5	5
Percentage Water	11.1	11.1	11.1	11.1

Other Information

DSN/U	B-6	B-9	B-13	B-14	

Soil pH	7.8	7.69	7.33	7.59
Minimum Soil Resistivity (ohm-cm)	1980	1260	860	1500
Sulfate Concentration (ppm)	80.5	45.5	10.1	52.3
Chloride Concentration (ppm)	135.6	9.8	3.3	11.4
Abrasion Level	1	1	1	1
2–5 Year Flow Velocity (ft/sec)	10	10	10	10
Design Service Life (years)	50	50	50	50
Height of Cover (ft)	10	10	10	10

AltPipe

Project EA: 04-4H29001

Project Engineer:

Location:

SCI-237-2.7/3.3, SCI-101-45.2/45.8

Description: Interchange and roadway improvements

Steel Pipes

	DSN/U	B-6	B-9	B-13	B-14
	Pipe Diameter (in)	18	18	18	18
Ріре Туре	Coat	Minimum	Thickn	ess (in)
	GAL	0.079	0.109	0.109	0.109
Corrugated Steel Pipe Helical Corrugations 2 2/3" x 1/2" Corrugations	AL2	0.052			0.052
	BC	0.064	0.079	0.109	0.079
	BCI	0.064	0.064	0.079	0.064
	PS	0.052	0.052	0.052	0.052
	AL2	0.064			0.064
Corrugated Steel Pipe 2 2/3" x 1/2" Annular Corrugations	BC	0.064			
	BCI	0.064	0.064		0.064
	PS	0.064	0.064	0.064	0.064

Aluminum Pipes

DSN/U	B-6	B-9	B-13	B-14	
Pipe Diameter (in)	18	18	18	18	
Ріре Туре	Minimum Thickness (in)				
Corrugated Aluminum Pipe Annular Corrugations 2 2/3" x 1/2" Corrugations	0.060			0.060	
Corrugated Aluminum Pipe Helical Corrugations 2 2/3" x 1/2" Corrugations	0.060			0.060	

Plastic Pipes

DSN/U	B-6	B-9	B-13	B-14	
Pipe Diameter (in)	18	18	18	18	
Ріре Туре	Availability				
PVC Corrugated	Allowable	Allowable	Allowable	Allowable	
HDPE Corrugated - Type S	Allowable	Allowable	Allowable	Allowable	

Reinforced Concrete Pipes

DSN/U	B-6	В-9	B-13	B-14
Pipe Diameter (in)	18	18	18	18
Steel Cover (in)	0.75	0.75	0.75	0.75
Sacks of Cement	5	5	5	5

DSN/U	B-6	B-9	B-13	B-14
Pipe Diameter (in)	18	18	18	18
Percentage Water	11.1	11.1	11.1	11.1

Other Information

DSN/U	B-6	В-9	B-13	B-14
Soil pH	7.8	7.69	7.33	7.59
Minimum Soil Resistivity (ohm-cm)	1980	1260	860	1500
Sulfate Concentration (ppm)	80.5	45.5	10.1	52.3
Chloride Concentration (ppm)	135.6	9.8	3.3	11.4
Abrasion Level	1	1	1	1
2–5 Year Flow Velocity (ft/sec)	10	10	10	10
Design Service Life (years)	50	50	50	50
Height of Cover (ft)	10	10	10	10

AltPipe

.

Project EA: 04-4H29001

Project Engineer:

Location: Description: SCI-237-2.7/3.3, SCI-101-45.2/45.8

Interchange and roadway improvements

Steel Pipes

DSN		B-6	B-9	B-13	B-14
	Pipe Diameter (in)	24	24	24	24
Ріре Туре	Coat	Minimum	Thickn	ess (in)
	GAL	0.079	0.109	0.109	0.109
	AL2	0.052			0.052
Corrugated Steel Pipe Helical Corrugations 2 2/3" x 1/2" Corrugations	BC	0.064	0.079	0.109	0.079
	BCI	0.064	0.064	0.079	0.064
	PS	0.052	0.052	0.052	0.052
	GAL	0.079			
	AL2	0.064			0.064
Corrugated Steel Pipe 2 2/3" x 1/2" Annular Corrugations	BC	0.064	0.079		0.079
, and the second s	BCI	0.064	0.064	0.079	0.064
	PS	0.064	0.064	0.064	0.064
Steel Spiral Rib Pipe 3/4" x 1" Ribs at 11 1/2" Pitch	GAL	0.079	0.109	0.109	0.109
	AL2	0.064			0.064
	BC	0.064	0.079	0.109	0.079
	BCI	0.064	0.064	0.079	0.064
	PS	0.064	0.064	0.064	0.064
	GAL	0.079	0.109	0.109	0.109
	AL2	0.064			0.064
Steel Spiral Rib Pipe 3/4" x 1" Ribs at 8 1/2" Pitch	BC	0.064	0.079	0.109	0.079
	BCI	0.064	0.064	0.079	0.064
	PS	0.064	0.064	0.064	0.064
	GAL	0.079	0.109	0.109	0.109
Steel Spiral Rib Pipe 3/4" x 3/4" Ribs at 7 1/2" Pitch	AL2	0.064			0.064
	BC	0.064	0.079	0.109	0.079
	BCI	0.064	0.064	0.079	0.064
	PS	0.064	0.064	0.064	0.064

Aluminum Pipes

DSN/U	B-6	В-9	B-13	B-14	
Pipe Diameter (in)	24	24	24	24	
Ріре Туре	Minimum Thickness (in)				

Corrugated Aluminum Pipe Annular Corrugations 2 2/3" x 1/2" Corrugations	0.060	0.060
Corrugated Aluminum Pipe Helical Corrugations 2 2/3" x 1/2" Corrugations	0.060	0.060
Aluminum Spiral Rib Pipe 3/4" x 1" Ribs at 11 1/2" Pitch	0.060	0.060
Aluminum Spiral Rib Pipe 3/4" x 3/4" Ribs at 7 1/2" Pitch	0.060	0.060

Plastic Pipes

DSN/U	B-6	B-9	B-13	B-14	
Pipe Diameter (in)	24	24	24	24	
Ріре Туре	Availability				
PVC Corrugated	Allowable	Allowable	Allowable	Allowable	
HDPE Corrugated - Type S	Allowable	Allowable	Allowable	Allowable	

Reinforced Concrete Pipes

DSN/U	B-6	В-9	B-13	B-14
Pipe Diameter (in)	24	24	24	24
Steel Cover (in)	1	1	1	1
Sacks of Cement	5	5	5	5
Percentage Water	11.1	11.1	11.1	11.1

Other Information

DSN/U	B-6	В-9	B-13	B-14
Soil pH	7.8	7.69	7.33	7.59
Minimum Soil Resistivity (ohm-cm)	1980	1260	860	1500
Sulfate Concentration (ppm)	80.5	45 <u>.</u> 5	10.1	52.3
Chloride Concentration (ppm)	135.6	9.8	3.3	11.4
Abrasion Level	1	1	1	1
2–5 Year Flow Velocity (ft/sec)	10	10	10	10
Design Service Life (years)	50	50	50	50
Height of Cover (ft)	10	10	10	10

AltPipe

Project EA: 04-4H29001

Project Engineer:

Location:

SCI-237-2.7/3.3, SCI-101-45.2/45.8 Description:

Interchange and roadway improvements

Steel Pipes

	B-6	B-9	B-13	B-14	
Pipe Diameter (in)		30	30	30	30
Ріре Туре	Coat	Minimum Thickness (in)			
Corrugated Steel Pipe Helical Corrugations	GAL	0.079	0.138	0.138	0.138
	AL2	0.052			0.052
	BC	0.064	0.079	0.138	0.079
	BCI	0.064	0.064	0.079	0.064
	PS	0.052	0.052	0.052	0.052
	GAL	0.079			
	AL2	0.064			0.064
Corrugated Steel Pipe 2 2/3" x 1/2" Annular Corrugations	BC	0.064	0.079		0.079
	BCI	0.064	0.064	0.079	0.064
	PS	0.064	0.064	0.064	0.064
	GAL	0.079	0.109	0.109	0.109
	AL2	0.064			0.064
Steel Spiral Rib Pipe 3/4" x 1" Ribs at 11 1/2" Pitch	BC	0.064	0.079	0.109	0.079
172 1 1011	BCI	0.064	0.064	0.079	0.064
	PS	0.064	0.064	0.064	0.064
	GAL	0.079	0.109	0.109	0.109
	AL2	0.064			0.064
Steel Spiral Rib Pipe 3/4" x 1" Ribs at 8 1/2" Pitch	BC	0.064	0.079	0.109	0.079
	BCI	0.064	0.064	0.079	0.064
	PS	0.064	0.064	0.064	0.064
Steel Spiral Rib Pipe 3/4" x 3/4" Ribs at 7 1/2" Pitch	GAL	0.079	0.109	0.109	0.109
	AL2	0.064			0.064
	BC	0.064	0.079	0.109	0.079
	BCI	0.064	0.064	0.079	0.064
	PS	0.064	0.064	0.064	0.064
	CSS	0.064	0.064	0.064	0.064

Aluminum Pipes

DSN/U	B-6	В-9	B-13	B-14
Pipe Diameter (in)	30	30	30	30

DSN/U	B-6	B-9	B-13	B-14
Pipe Diameter (in)	30	30	30	30
Ріре Туре	Minimum Thickness (in)			
Corrugated Aluminum Pipe Annular Corrugations 2 2/3" x 1/2" Corrugations	0.075			0.075
Corrugated Alumin Pipe ipp Annular Corrugations	0.060	Minimum Th	iickness (in)	0.060
Corrugated Aluminum Pipe Helical Corrugations 2 2/3" x 1/2" Corrugations	0.075			0.075
Corrugated Aluminum Pipe Helical Corrugations 3" x 1" Corrugations	0.060			0.060
Aluminum Spiral Rib Pipe 3/4" x 1" Ribs at 11 1/2" Pitch	0.060			0.060
Aluminum Spiral Rib Pipe 3/4" x 3/4" Ribs at 7 1/2" Pitch	0.060			0.060

Plastic Pipes

DSN/U	B-6 B-9 B-13 B-14				
Pipe Diameter (in)	30	30	30	30	
Ріре Туре	Availability				
PVC Corrugated	Allowable	Allowable	Allowable	Allowable	
HDPE Corrugated - Type S	Allowable	Allowable	Allowable	Allowable	

Reinforced Concrete Pipes

DSN/U	B-6	B-9	B-13	B-14
Pipe Diameter (in)	30	30	30	30
Steel Cover (in)	1	1	1	1
Sacks of Cement	5	5	5	5
Percentage Water	11.1	11.1	11.1	11.1

Other Information

DSN/U	B-6	В-9	B-13	B-14
Soil pH	7.8	7.69	7.33	7.59
Minimum Soil Resistivity (ohm-cm)	1980	1260	860	1500
Sulfate Concentration (ppm)	80.5	45.5	10.1	52.3
Chloride Concentration (ppm)	135.6	9.8	3.3	11.4
Abrasion Level	1	1	1	1
2–5 Year Flow Velocity (ft/sec)	10	10	10	10
Design Service Life (years)	50	50	50	50
Height of Cover (ft)	10	10	10	10